

AN ABSTRACT OF THE MASTER’S PROJECT REPORT OF

Amulya Gangam for the degree of Master of Science in Computer Science

presented on December 7, 2022.

Title: Share What You Can

Abstract approved:

Dr. Will Braynen

Food is our primary source of nourishment. However, with the growing population,

there has been a substantial increase in food waste by both restaurants and

individuals. Share What You Can is an Android application designed to tackle

this problem. The application operates as a two-sided marketplace to which donors

upload images of and details about surplus food they want to share with receivers.

Donors advertise that they have food by uploading images of the food they want

to donate with an additional description that includes the food details. Receivers

go through the donors’ posts and, if they like some food item from the listings,

then they can request it. Moreover, food expiration dates are rarely considered in

most food-sharing applications. To avoid the possibility of donating expired food,

Share What You Can allows donors to scan expiration dates, ensuring only fresh

food is shared.

©Copyright by Amulya Gangam
December 7, 2022
All Rights Reserved

Share What You Can

by

Amulya Gangam

A MASTER’S PROJECT REPORT

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented December 7, 2022
Commencement June 2023

Master of Science master’s project report of Amulya Gangam presented on
December 7, 2022.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my master’s project report will become part of the permanent
collection of Oregon State University libraries. My signature below authorizes
release of my master’s project report to any reader upon request.

Amulya Gangam, Author

ACKNOWLEDGEMENTS

I want to convey my heartfelt gratitude to Will Braynen, my advisor, for making

my project possible. He is the best mentor I could ever get. His unwavering

assistance has enabled me to grasp a number of industrial practices. He never

hesitated to correct me; and his iterative approach to examining my work was

highly constructive. Morgan Lutz, my industrial mentor, deserves special recognition.

Her excellent feedback helped shape my project and introduced me to latest

Android concepts. I want to appreciate my committee members, Dr. Bella Bose

and Dr. Mike Bailey for making time in their busy schedules. They never failed

to respond to my emails, and during my defense, I received fantastic remarks and

recommendations. I want to convey my deepest gratitude to my parents for their

constant emotional support. They always encouraged me to strive more, which was

a massive help for me throughout my academic career. They believed in me and

motivated me even when I doubted myself. I will always be grateful to my parents

and will do my best to make them proud. Finally, I thank God for showering me

with unconditional love and being my most incredible supporter throughout my

life. He empowered me with his blessings.

TABLE OF CONTENTS

Page

1 Introduction . 1

1.1 Background . 1

1.2 Existing Solutions . 3

1.3 Proposed Solution . 4

2 Product requirements . 5

2.1 General public as food donors, not just food pantries 5

2.2 System Description . 5

2.3 Screen Flow chart . 7

2.4 Use-case diagram . 13

3 Implementation . 19

3.1 Technologies and technical terms used 19

3.2 Architecture . 24
3.2.1 Tech stack . 24
3.2.2 Client Architecture . 30

4 Project setup . 33

4.1 IDE Setup . 33

4.2 Firebase Setup . 34

5 Unit-Testing . 42

6 Results . 43

7 Limitations . 56

8 Conclusion . 57

9 Future Scope . 58

TABLE OF CONTENTS (Continued)

Page

Bibliography . 60

References . 60

LIST OF FIGURES

Figure Page

2.1 Authentication . 8

2.2 donor home screen flow . 10

2.3 Receiver flow . 12

2.4 Use case Diagram . 14

3.1 Implemented using COIL . 20

3.2 Updating UI from View Models . 21

3.3 Tech Stack Diagram . 24

3.4 Framework . 31

3.5 MVVM Architecture for Food Request class 32

4.1 Create new project . 33

4.2 Name the project . 34

4.3 Choosing account for Google Analytics 35

4.4 Adding Firebase to application . 35

4.5 Adding package name . 36

4.6 Downloading google-services.json file 37

4.7 Adding google-services.json file . 38

4.8 Project Code Structure . 39

6.1 Select user type . 43

6.2 User Authentication . 44

6.3 Select Donor Type . 45

6.4 Donor Home Screen . 46

6.5 Validations for uploading food details 48

LIST OF FIGURES (Continued)

Figure Page

6.6 Validations for uploading food details 49

6.7 View food requests . 51

6.8 Approve food requests . 52

6.9 Food Donation posts . 53

6.10 Sending food request . 55

LIST OF TABLES

Table Page

2.1 Register use case . 15

2.2 Post Food details . 16

2.3 View Food Request use case . 17

2.4 Approve Food Request use case . 17

2.5 View Food posts Use-case . 18

2.6 View detailed Food posts Use case 18

2.7 Request Food . 18

3.1 Global vs United States market share in percentages 25

3.2 Java and Kotlin comparison . 26

Chapter 1: Introduction

Pope Francis said, “Throwing away food is like stealing from the table of those

who are poor and hungry” (Francis, 2013). The Android application Share What

You Can facilitates the donation of surplus food by individuals or food pantries

by connecting donors with recipients. Its main objective is to reduce food wastage.

1.1 Background

The problem of food wastage dates back to the 1800s when industrialization made

food transport from farms and factories easier for consumer; because farms and

factories were able to produce more food than was required, people began to dispose

of food (Chen & Chen, 2019; Nunley, 2013). Estimates of food waste range from

1.3 billion tons globally “per year” (Schanes, Dobernig, & Gözet, 2018), which

is an annual 2600 billion pounds globally, to 133 billion pounds in 2010 for the

United States alone (Buzby, Farah-Wells, & Hyman, 2014). Approximately 30

to 40 percent of the American food supply is wasted (Hall, Guo, Dore, & Chow,

2009). Only 3 percent of food waste is “diverted to emergency food programs”,

while the other 72 percent is disposed of in landfills instead of getting composted

(Griffin, Sobal, & Lyson, 2022).

My best guess is that this happens because people often overestimate how much

2

food they need. They over-prepare for gatherings, parties, and functions and end

up throwing the extra food away. Because most food banks do not accept prepared

food, restaurants trash out leftovers. Grocery stores discard food products that go

unsold because of overproduction and over-ordering of food.

Many governments and organizations have introduced awareness programs and

laws to decrease these losses. In the following year, the USDA and the EPA

together coined the term “The U.S. Food Loss and Waste 2030 Champions”,

awarding the title to “businesses and organizations that have made a public commitment

to reduce food loss and waste in their own operations in the United States by 50

percent by the year 2030” (U.S. Food Loss and Waste 2030 Champions , 2017).

Despite the promising momentum and recognizable progress, much more work

remains.

In an effort to help minimize food waste, I have developed a mobile application

called Share What You Can for the Android platform. Using this application,

individuals and organizations can donate edible prepared foods, including packaged

foods and ingredients. Those in need of food can also use the application to

browse the available food and request the food of their choice. The Share What

You Can provides direct interaction between the users of the application, so that

the fooddonor will know to whom their food is donated to. Furthermore, this

application uses OCR technology to scan the expiration dates of the food. So that

only fresh food can be donated. The food post will be automatically removed if

the food expires after the post is left unnoticed for a long time, thereby ensuring

only fresh food is donated.

3

1.2 Existing Solutions

Currently, there are no applications that can be used by both food pantries and

individuals. Furthermore, only a few applications check the food’s expiration date,

meaning that some people may be donating usable food. The following are some

food donation applications available in the Google Play store.

Share The Meal Charity Donate(Amarri, Corbi, Randall Smith, & Wu, 2015) is

a 2020 Nobel Peace Prize-winning Android application that allows users to donate

money to help the underprivileged buy food. Its primary premise is that small

donations can have a tremendous impact when given in large numbers; thus it

collects thousands of small contributions that add up to significant results in the

lives of people who struggle to afford food. The application is limited, though, in

that it can only meet its goal if people continue to contribute money.

Careit Food Donation(Schill, 2022) is an Android application that connects

businesses and institutions (donors) that have surplus food to non-profit food

recovery agencies that need that food (receivers). Non-profits look for nearby food

of interest and either pick it up from the organization or arrange for a drop-off.

One of the limitations of the application is that only organizations (as opposed to

individuals) can donate or receive food.

Meal connect,(Claire, Byrdak, Fitzgerald, Hall, & Bernard, 2017) is an Android

and web application that facilitates the donation of surplus food by connecting

donors with volunteers who can distribute food. When uploading the details of

the available food, the donor also provides their Zip code and preferred pickup

4

time so that nearby volunteers pick up the items and redistribute them.

This application’s main drawback is that it doesn’t allow donors to directly

connect with and donate food to receivers.

1.3 Proposed Solution

The solution I propose is an Android application that aims to minimize food

wastage by providing a platform to donate and receive food. This simple and

user-friendly application is compatible with all Android devices and serves as

an interface between the donor (food pantries and individuals) and the receiver

(general public). Further, Share What You Can would not limit food distribution

to low-income groups. Anyone in need of food would be eligible to receive it.

Organizations and individuals willing to contribute surplus food could register

for the application, while individuals seeking food could locate nearby food donations

and contact the respective food donor to request a specific food item. Donors

would then review and accept or deny those food requests based on the item’s

availability.

5

Chapter 2: Product requirements

2.1 General public as food donors, not just food pantries

Most food-sharing applications in the Google Play store and App stores connect

commercial entities, such as grocery stores, restaurants, and catered event organizers,

with non-profit organizations (food banks) needing food. Not many applications

include all types of users.

Share What You Can enables both food pantries and the general public to

contribute food by facilitating the direct connection between food donors and

recipients without the use of intermediaries. As a result, donors know where

exactly their food is going rather than blindly depending on a distributor.

2.2 System Description

The project is divided into three modules: donor, receiver, and the Login module,

where Login is the common module for both donor and receiver.

Login Module:

The application authenticates each user by using a device ID, a unique identifier

assigned to each device, such as a smartphone, iPad, tablet, or laptop.

Donor Module:

In this module, donor can donate surplus food to the public. To accomplish

6

this, they advertise the donation by including a name, image, description for the

food item, contact details, type of food, and expiration date. The system prohibits

the user from uploading expired food items. The post will be automatically

removed if the food is unnoticed for a long time and expires after it is posted.

The modules can be further classified as:

1. Sign in

2. Select user type

3. Home page

4. Add food details

5. View requests

6. Approve requests

7. View donation history

8. Logout

Receiver Module:

In this module, the receiver can view posts that include the details of food

items uploaded by the donor. The module sorts the posts in descending order so

that the most recently uploaded posts appear on the top. After viewing the food

donation posts receiver can request a specific food item and contact the donor for

further details.

I further classified this module as follows:

7

1. Sign in

2. Send Request

3. Connect with donor

2.3 Screen Flow chart

The flow chart below is intended to illustrate the way that the application is used,

in addition to providing the functional descriptions of the individual users of the

application.

Step 1: To begin, the user must launch the Share What You Can application.

Step 2: Following this, the application will prompt the user to identify their role as

either a donor or a recipient.

After the user type is selected, the order of application screens differs based

on the following cases.

Step 3: Case 1: First-time user of the application

• To use the application for the first time, users must register with their

device ID.

• If the user is logged in as a donor, then they must select their donor

user-type (pantry or individual). If logged in as a receiver, the current

step is skipped.

8

Figure 2.1: Authentication

• After the user makes their selection, the application will direct the donor

to the home screen and receiver to the dashboard screen where the food

9

donation posts are listed.

Case 2: Not a first-time user

• The user can directly login to the application.

• After signing-in donor gets navigated to the home screen and the receiver

to the dashboard screen of the application where the food donation posts

are displayed.

Step 4: The donor can perform the following operations on the home screen (Figure 2.2):

(a) Add food details

(b) View food requests received from the receiver.

(c) Logout

Step 5: Add food details (Figure 2.2):

On the home screen, the donor can upload the details of food such as

1. Food name and description: In order to aid the receiver in identifying the

food, the donor must add a short name and description of the food.

2. Food Type: The donor must choose a category for the donated food item.

The following are the allowed food types:

(a) Cooked Food

(b) Packaged Food

(c) Groceries

10

Figure 2.2: donor home screen flow

11

(d) Ingredients

4. Expiration date: The final step before uploading the food details is to

provide its expiration date. The donor can use this application to either scan

the expiration date or enter the date manually. The manual entry is provided

considering the case when the date on the product is not clear(Figure 2.2).

Query:

”Current date less than the expiration date”

There is a possibility that a food donor may accidentally donate expired

food. As a precautionary measure, Share What You Can uses an optical

character recognition (OCR) feature to scan the food’s expiration date and

identify expired food. To make the food available for donation, the current

date must be less than the expiration date. If the above condition fails, the

system does not allow the user to donate food.

Step 6: View food donation posts

The application immediately updates the receiver dashboard with the donor’s

food donation posts (Figure 2.3).

Step 7: Request for the food

The receiver can check for the food of their choice in the list of food donations

and requests a specific food item (Figure 2.3).

Step 8: View food Requests from receiver

12

Figure 2.3: Receiver flow

13

The food donor views the food requests and decides whether or not to

approve them. When a request is approved, the application assigns the food

item to the receiver, and after this, the donor can donate the approved food

item by confirming the popup that says “Are you sure you want to donate

the food?.” When the food is donated, the application automatically removes

its associated post from receiver dashboard (Figure 2.3).

Step 9: If the receiver food request is approved by the donor both the users can

further communicate regarding the status of food, the mode of food transport

(pickup / drop off), and the time and date that the food can be provided. If

the receiver food request is not approved by the donor, it can be because of

the delayed response or the food might have already been assigned to another

person. In those cases, the receiver can wait for the request to be approved

or request another food item (Figure 2.3).

Step 10: The user can choose to logout to visit the select type of user (donor / receiver)

screen.

2.4 Use-case diagram

In this chapter, I discussed various use cases of the Share What You Can application.

This use-case diagram demonstrates the interaction of the system and entities

outside the system, known as actors. Actors can be humans or other external

hardware or other systems.

14

Figure 2.4: Use case Diagram

As shown in the use-case diagram above, the user (donor or receiver) registers

or signs in to the application. While the donor posts the food details, the receiver

checks for the nearby food and chooses based on his/her personal choice. On

clicking the individual food item, the receiver can view detailed food posts from

which food requests can be sent. After receiving a request, the food donor views

it and decides to approve or disapprove it.

Actors: donors and receivers are the actors of the system.

Use cases:

15

Name Register

Description
The user registers with
device ID.

Actor(s) donor and receiver

Flow

The following use case
starts when the user still
needs to register with the
application.
a) The system prompts the
user to register with the
device ID.
b) The user clicks on the
sign-in button.
c) The system stores the
device ID and creates an
account.

Success Case

The system authenticates
the user with their device
ID and redirects them to the
home page.

Error Case

When the user attempts to
register without an internet
connection, the system
displays an error message.

Table 2.1: Register use case

16

Name Post food details
Description The user adds food details.
Actor(s) donor

Flow

This use case begins when the donor
logins to the application.
a) The system prompts the user
to select the donor type (pantry or
individual).
b) The user navigates to the home
screen to select the donor type.
c) The user selects the upload food
button.
d) The system prompts the user to
fill in the food details, including food
name, description, cooked hours, and
expiration date.
e) The system verifies the information
and uploads the food details.

Success Case
The user navigates to the home screen
after entering the appropriate food
details.

Error Case

The system prompts the user to upload
food details in the following scenarios:
Case 1: Invalid data
The user enters an expiration date that
is less than or equal to the current date.
Case 2: Missing Fields
a) The user attempts to upload food
without entering details in all of the
fields.
The system displays an error
message prompting the user to
enter information in all the fields.

Table 2.2: Post Food details

17

Name View Food requests

Description
The user views the list of food requests
sent by the receiver.

Actor(s) receiver

Flow

The following use case starts when
the user is on the application’s home
screen.
a) The user chooses the food request
option from the drawer.
b) The user views the list of food
requests sent by the receiver.

Table 2.3: View Food Request use case

Name Approve Food requests

Description
The user approves the food
request.

Actor(s) donor

Flow

The following use case starts
when the user is on the
application’s home screen.
a) The system prompts the user
to approve the food request.
b) The user approves one of the
multiple food requests.
c) The system prompts the user
to confirm the donation of the
food.
d) After the confirmation of
the food donation, the system
removes the post from the
receiver dashboard.

Result
The user successfully approved
the food request

Table 2.4: Approve Food Request use case

18

Name View Food Posts
Description The user views the list of uploaded food items.
Actor(s) receiver

Flow

The following use case starts when the user is
logged into the application.
a) The user views the list of food items uploaded
by the donor.

Table 2.5: View Food posts Use-case

Name View detailed food posts
Description The user views the detailed view of the food item.
Actor(s) receiver

Flow

The following use case starts when the user is
logged into the application and clicks on a specific
food post.
a) The user views the detailed view of the food
item, and the system displays the additional
details about the food and the donor contact
information to the user.

Table 2.6: View detailed Food posts Use case

Name Request food

Description
The user views the list of food requests sent by the
receiver.

Actor(s) receiver

Flow

The following use case starts when the user is on
the application’s home screen.
a) The user chooses the food request option from
the drawer.
b) The user views the list of food requests sent by
the receiver.

Table 2.7: Request Food

19

Chapter 3: Implementation

3.1 Technologies and technical terms used

1. Firebase: Firebase is a serverless platform used for developing high-quality

mobile and web applications for both Android and iOS. Because it is cloud-based,

developers can use Firebase to sync their cloud data across different devices

or share it with multiple users.

2. Kotlin: Kotlin is the cross-platform and general-purpose programming language

built by JetBrains. It is a Java-compatible language that may operate on

the Java Virtual Machine (JVM). Google has officially recognized Kotlin as

an Android programming language, and currently, most Android companies

are migrating from Java to Kotlin.

3. Sealed Classes:

A sealed class is a superclass listed with data states, objects, functions, and

classes. To maintain type safety, a sealed class follows a restricted class

hierarchy meaning that its instances can only have a limited set of types

but cannot have any other type. Furthermore, this type can be determined

when the class is compiled. For instance, third-party clients won’t be able to

extend others’ sealed classes in their code. Sealed classes are an extension of

an enum class. Each subtype in the sealed class can have different properties.

20

4. COIL:

Figure 3.1: Implemented using COIL

Coroutine Image Loader (COIL), the image loading library I used in this

application, is used to load images from the backend. Its extensive set of

features simplified and eased the process of loading images. Key features of

COIL that any developer will find useful include the following:

1. The images can be loaded by simply calling the function load.

2. The developer can apply various transformations, such as blur (applies

21

blur), circle crop (crops and centers the image into a circle), and rounded

corners (rounds the corners of the image).

5. LiveData(LiveData Overview , 2022): LiveData is an observable data holder

class with a UI (views) that observes the LiveData object, which holds some

of the data that the UI wants to show on the screen. When the LiveData

changes, the UI updates itself with new data, making it easier to maintain

what’s going on screen by staying in sync with the data (Figure 3.2).

Figure 3.2: Updating UI from View Models

6. Activity

Activity is responsible for handling the user interactions with the application.

22

Essentially, it creates a window for holding the UI components.

7. Fragment

Usually, fragments are referred to as sub-activities. The system breaks a

single activity into fragments, allowing the developer to work on portions of

the UI in smaller pieces.

Fragment

8. MVVM:

MVVM is the abbreviation for Model-View-View Model. The following three

components are critical for achieving the separation of concerns.

• Model: A model acts as a holder for the application data; it cannot

directly communicate with the view.

• View: Because views handle the immediate interaction with the user,

they contain all of the code related to the UI. They do not, however,

handle any business logic. Views also have UI elements that trigger

events.

• View Model: The fragments and activities can be broken down into

views and view models. The view model handles the entire business

logic, and its main responsibility is to read data from the model and

expose it to the view. In short, it acts like glue between the UI and

business logic. The view model tells the view what data to display

and makes the appropriate data observable so that when some data in

23

the view model changes, all of the views observing the view model are

notified about the change (Figure 3.2).

9. Data Binding: Data Binding, as the name suggests, is a technique that links

the UI directly with the data source, ensuring that the UI stays up-to-date. In

Android, developers perform data binding using the support library provided

by Android Jet Pack. This technique is mainly used for MVVM architecture

and helps eliminate traditional, tedious ways of using “FindViewById” calls,

thereby increasing application performance.

_binding = FragmentRequestBinding.inflate(inflater, container, false)

binding.title.text = "Hello"

Just by using the binding variable ID and the properties provided to the

reference in the XML, the system can modify the data. The developer must

enable the view binding before they can use it.

\ViewBinding = True"

Completing this step generates a binding class for all layout XML files. For

redirecting to the XML file, viewBinding creates a separate binding object

for each layout.

24

3.2 Architecture

3.2.1 Tech stack

I used the following tech stack diagram, as shown in Figure 3.3.

Figure 3.3: Tech Stack Diagram

25

3.2.1.1 Front-end development

I developed Share What You Can with the assistance of various technologies and

tools. Android Studio is the Integrated Development Environment (IDE) I used to

develop the application’s UI, communicate with Firebase, and test the application.

3.2.1.2 Why Android?

I chose Android over iOS for the following reasons:

1. To practice my expertise in Android, I developed an application for Android

users.

2. The majority of global market users use Android instead of iOS.

Android / iOS
Global
Market Share

United States
Market Share

Android 72.2 26.99
iOS 40.54 59.17

Table 3.1: Global vs United States market share in percentages

Even though the United States has the highest number of iPhone users,

with a market share of approximately 50 percent (Iaeme, 2013), Android

dominates iOS in the Global Smartphone market, as shown in Table 3.1.

3. The application can be made easily available to low-income groups.

For frontend development, including developing the user interface, I used Android

Studio IDE, Kotlin programming language, and Android XML

26

I have designed the UI for the Android application using Layouts and Widgets;

In Layouts, child views can be positioned while in widgets objects such as buttons

and text boxes can be positioned.

3.2.1.3 Choice of Programming language

Java Kotlin

class PostModel {

private String desc;

private String title;

public String getTitle() {

return title;

}

public void setTitle(

String title) {

this.title = title;

}

public String getDesc() {

return desc;

}

public void setDesc(

String desc) {

this.desc = desc;

}

}

data class PostModel(

val desc: String,

val title: String,

)

Table 3.2: Java and Kotlin comparison

27

Kotlin is an official Android programming language that supports a wide range

of features.

Following is the list of the Kotlin features that were the most useful for developing

Share What You Can.

• Null safety: Rather than allowing null safety errors to crash an application

during run time, Kotlin detects them at compile time and suggests possible

fixes.

• Extend functions from other classes: The developer can easily extend functions

from other classes by calling their names.

• Smart Casts: In Java, the developer must manually identify variable types

and typecast accordingly. By automatically typecasting, Kotlin simplifies

the work.

• Data classes: Kotlin provides the automatic generation of getter-setter methods.

As shown in Table 3.2, in Kotlin there is no need to write the getter-setter

methods manually because they are auto-generated.

3.2.1.4 Infrastructure

Google Cloud Platform is a cloud computing platform that provides many cloud

computing services, some of which are exposed to Firebase for client-side developers.

I used the following Google services in the development of Share What You Can:

28

1. Google Cloud storage Firestore

2. Firebase Crashyltics

3. Firebase Authentication

4. Firebase ML

3.2.1.5 Why Firebase?

Primarily, I chose Firebase because its ready-made features simplify the developer’s

job. The following are Firebase features I used for building Share What You Can

that demonstrate the application’s appropriateness for Firebase’s platform services.

1. Cloud Firestore

2. ML Kit

3. Authentication

4. Crashlytics

3.2.1.6 Backend development

Cloud Firestore eliminates the need to maintain large servers, as well as networking,

security, and scalability issues associated with a large user base. It automatically

fetches data from the database as they happen or can request and fetch data

manually. Additionally, its cloud database can store data online and sync it across

devices or share it among multiple users. I used Firebase Firestore to store the

user details, food details, and data related to food requests.

29

1. Real-time query results: The UI is up to date with the latest data changes.

2. High Performance: It can store large documents.

3. Offline Query Support: Cloud Firestone caches queried documents locally.

3.2.1.7 Middleware

1. ML Kit: The developer can integrate the trained machine learning model

into an Android mobile application with a few lines of code. This feature

requires no prior knowledge of neural networks or models.

I integrated the Firebase ML Kit SDK to use the Optical Character Recognition

feature. With the help of OCR, users can scan the expiration date on the

product label.

2. Authentication: Firebase makes authentication easy for end users and developers.

It facilitates the use of different modes of authentication, such as email/password,

phone number, or sign-in as anonymous users. Share What You Can authenticates

its users by using the email and password mode.

3. Crashlytics: I used the Crashlytics feature of Firebase exclusively to generate

a detailed report on application crashes.

30

3.2.2 Client Architecture

I implemented the system using the Model-View-View Model (MVVM) Framework

(Figure 3.4). My primary rationale for selecting MVVM is that it provides a clean

architecture and good code maintainability. It also deconstructs the code-heavy

activity or fragment into numerous single-purpose classes, breaking each fragment

or Activity into a view (UI) and a view model (data). Because Share What You

Can is a very small application, separating presentation logic from business logic

was easy.

As shown in Figure 3.5, I implemented the project Share What You Can using

views, view models, and models.

The view is the UI layer of the architecture, where all the presentation logic

is handled here. It displays data on the screen and also allows user interactions.

When the user starts interacting with the application, there can be a change in

data. To reflect those changes, UI should be updated. So, view retrieves the UI

state, i.e., application data from the view model, by observing the data exposed by

view models using observables. Finally, views convert the observed changes into a

form that UI can present and display.

View Model is the Data layer of the architecture, all the business logic related to

the UI elements displayed in the view are handled here. If there is any interaction

with the UI, then the UI notifies that event to the View Model. View Model

handles these user interactions; the model fetches the data from Firebase Firestore

and gives it back to the View Model. View Model is a data (state) holder that

31

Figure 3.4: Framework

exposes this data (state) to the view (UI) in the LiveData. The updated LiveData

object is exposed to the view (UI) to render it. The above process is repeated for

32

Figure 3.5: MVVM Architecture for Food Request class

every event needing a state change.

33

Chapter 4: Project setup

The GitHub link of the Share What You can project is attached here.

4.1 IDE Setup

For developing the application front end, I installed the latest version of Android

studio from official website for Android developers

Figure 4.1: Create new project

https://github.com/gangamamulya/Share-what-you-can
https://developer.Android.com/studio/?gclid=Cj0KCQiAveebBhD_ARIsAFaAvrEKeZntut1wHfkX4XKF8h5xlX45Oyfy6IMr5he8rrdqE8r4ATXOvicaApnXEALw_wcB&gclsrc=aw.ds

34

4.2 Firebase Setup

The following steps are necessary for setting up the backend and connecting to the

Android application: 1. Create a new Firebase Project 2. Connect the Android

application to Firebase.

1) Create a new Firebase Project

As shown in Figure 4.1, I created a new Firebase project by clicking on ”Add

project” in the Firebase console.

Figure 4.2: Name the project

Next, I added a project name (as shown in Figure 4.2).

In the final step, I selected the default Firebase account for configuring the

Google Analytics Account, as shown in Figure 4.3

By clicking on Create Project, a new project with the previously mentioned

application name is created.

35

Figure 4.3: Choosing account for Google Analytics

Figure 4.4: Adding Firebase to application

36

2) Connect the Android application to Firebase

To add the application to Firebase, we must register it with Firebase. The

following steps describe how to do this.

Because I developed an Android application, the Android icon is selected, as

shown in the Figure 4.4

Figure 4.5: Adding package name

I added the package name of the application, as shown in Figure 4.5. After

entering the package name, I registered the application with Firebase by clicking

37

on Register application (Figure 4.5).

Figure 4.6: Downloading google-services.json file

Then, google-services.json file should be downloaded (as shown in Figure 4.6)

and added to the application-level of the project (Figure 4.7)

To make the above JSON file accessible to Firebase SDK, google-services plugin

should be added in the project-level and application-level build.gradle file.

Then the plugin needs to be added to the dependencies of the project-level

build.gradle file.

classpath ‘com.google.gms:google-services:4.3.13’

The google-services plugin should be added to the plugins section and both the

google-services plugin and the Firebase-SDK should be added to the application-level

build.gradle file.

38

Figure 4.7: Adding google-services.json file

id ‘com.google.gms.google-services’

At this point, all of the necessary Firebase SDKs have been added to the dependencies.

At the completion of the above steps, the application is registered with Firebase.

Application Structure

Android Studio automatically organizes the project into packages.

The following picture demonstrates the application structure of Share What

You Can, as created by Android studio.

As shown in Figure 4.8, the application contains Gradle files (build.gradle)

and JSON Files. Using these Gradle files, Android Studio imports all of the

39

Figure 4.8: Project Code Structure

libraries required for this project.

”Example” is the package name, and ShareWhatYouCanProject is the name I

gave to the project. To read the application’s code, navigate to the following path.

/app/src/main/java/com/example/ShareWhatYouCanProject

I structured the entire project into the MVVM architecture. I also used

adapters to fetch the data from models and display it in views.

I used the following packages in Share What You Can:

adapter

40

The adapter classes listed above take the data from the database (Firestore), model

classes, and layouts (such as text view) and display it to the users in adapter view.

auth

The package auth contains the code related to user authentication implementation.

utils

The package contains classes that are used globally in the project, and this section

contains extension methods, constants, and functions that are used globally.

models

I used three models in this application.

1. User Type: The User Type model identifies the type of user (donor or

receiver).

2. Post Model: The Post model stores the data required for uploading food

details.

3. Request Model: This model stores the data required for handling food

requests.

I used the following packages for implementing the donor flow:

donor

This package contains the implementation of uploading food details.

deliverfood

41

This package contains the implementation of handling (view and approve) food

requests sent by receiver.

home

This package contains implementation details of the home screen of donor.

post

This package contains the source code for displaying details of food posts uploaded

by the donor.

I used the following packages used for implementing receiver flow:

rdashboard

This package contains the implementation of a view list of food posts.

foodrequest

Running the Application: Developers may run this application in an Emulator

or in a physical device. To run the application, the run application button should

be clicked.

42

Chapter 5: Unit-Testing

Software testing is one of the most crucial steps in designing a robust software

system. To make sure all the individual components of the application are working

properly, I performed Functionality testing to test the functionality of the application.

I unit tested all of the Non-UI components of the project using the standard APIs

provided by JUnit, ensuring that each of the view models passed the test before

moving on because the project contains many views and view models. For testing,

I first configured JUnit and then used JDK.

43

Chapter 6: Results

In this section, I discuss the application screens. Following are the screenshots of

Share What You Can.

Choose the user role:

Figure 6.1: Select user type

44

(a) donor login (b) receiver login

Figure 6.2: User Authentication

On the first launch, the application prompts the user to login as the appropriate

user type (either donor or receiver). Those who wish to donate food can login as

donor, and anyone in need of food can login as a receiver (Figure 6.1).

Authentication:

After this, the application authenticates the user with their unique device ID.

The device ID is the unique alphanumeric code generated for every phone once

45

Figure 6.3: Select Donor Type

it is set up (Figure 6.2).

Select donor user type:

After the authentication process, the application gives the donor the option of

selecting their type. Following are the categories for the donor user type.

1. Food pantries: Any nonprofit organization or welfare institution that would

like to donate food can sign in as a food pantry.

2. Individual: A member of the general public can sign in as an individual

46

(Figure 6.3).

After the selection is made, the application stores the applicable details in

Firebase and then navigates the user to the home screen, as shown in Figure 6.4.

Home Screen

Figure 6.4: Donor Home Screen

The following order of screens displays when the application launches for the

first time.

47

(a) Choose a user role (b) Authentication (c) Select Donor Type (d) Home

Screen

If the application is already installed, then the home screen is displayed first

after the launching the application. On the home screen, the application provides

the donor with an upload food option and a drawer option.

Upload Food:

This screen allows the donor to donate food. Food image can be uploaded

along with name and short description. The mobile application of Share What

You Can performs the following validations of user input: missing image, empty

text fields, and invalid user input in text fields.

Missing Image:

If the donor tries to upload the food details with a missing image, then the

alert message, “Choose an image” is displayed.

Missing field/fields:

If the donation form is submitted with missing fields (food name, description,

cooked hours, and/or food type), then the application displays the alert message,

“Please fill all fields.”

Invalid user input text fields:

If the donor attempts to upload details for expired food or food that has been

cooked too long ago, then the alert message, ”Food can’t be donated” is displayed.

Drawer:

The application navigates the drawer to three screens (home screen, view food

requests, and logout), as shown in Figure 6.7.

48

(a) Choose image (b) Fill all fields

Figure 6.5: Validations for uploading food details

49

(a) Cant upload food (b) Expired food

Figure 6.6: Validations for uploading food details

50

Food Request:

On the home screen, the donor can also view the requests made for food that

they have listed. These requests are listed in a recycler view with the name of the

food requester and the approve button.

Donation confirmation:

Before the food is available for donation, a confirmation dialogue box is displayed,

as shown in Figure 6.7.

Food donated:

After the food is donated, the post is removed from the receiver’s dashboard.

Logout:

When the user clicks the logout button, the application navigates them back

to the select user type screen.

Receiver Dashboard:

If the user is already logged in, then the above screen(Figure 6.9) becomes

the starting point of the application. On the dashboard, the receiver will be able

to view the list of food donation posts added by the donor. Each of these food

donation posts include detailed information about the food item, such its name,

an image, and a description of the item. Each time a food item is posted by a

donor, the donation list automatically updates.

Generally, posts appear in descending chronological order, with the most recent

post at the top of the list. Whenever a donor donates an item from the list, that

item is automatically removed from the list of available food items. Clicking on a

specific food item from the list results in navigating the receiver to the food details

51

(a) Donor drawer (b) View food requests

Figure 6.7: View food requests

52

(a) Donation confirmation (b) Donated food

Figure 6.8: Approve food requests

53

Figure 6.9: Food Donation posts

screen.

Food details:

The user can view the individual food item separately on this screen, which

provides detailed information about the item, including its name, a photo, and a

description. (Figure 6.10).

54

On click of the request food button, the receiver can request food for donation.

Once this button is clicked, the application displays the toast message, “Request

sent” to the receiver. The “Request Food” label is changed to “Already requested”

when the receiver attempts to revisit the detailed view of the same food post

(Figure 6.10).

55

(a) Food details (b) Food request sent

Figure 6.10: Sending food request

56

Chapter 7: Limitations

Share What You Can is an Android-compatible application and, therefore, is only

accessible to users with Android smartphones; iOS users will not be able to use

it. Second, users need to take into account some serious privacy concerns when

utilizing this application. More specifically, fraudulent activities can occur because

of the application’s lack of security. One of the potential outcomes of this could be

the misutilization of the personal details that are visible to the recipients on the

donation posts. Adding a phone number to the food donation post increases the

possibility of receiving repeated phone calls and requests for food from fraudsters,

expanding the scope of internet scams. Furthermore, fraudulent users may use the

provided phone numbers to obtain additional information about donors, including

names, addresses, and other identifying details.

57

Chapter 8: Conclusion

A massive amount of food is wasted on a daily basis while millions of people

suffer from malnutrition. With this in mind, I developed the Android application

Share What You Can to provide a platform for both individuals and NGOs to

donate food. People with surplus food can donate their food, and those in need

can request the food from the food donors. This is significant because very few

applications in the Play Store allow both food pantries and individuals to provide

food. It is important to note that this application track the expiration date of

food items once they have been uploaded; as a result, if a receiver doesn’t claim

an uploaded food item within a short period of time, it may expire. The expired

food is automatically removed from the food donation posts.

58

Chapter 9: Future Scope

This application meets the basic requirement of assisting with the donation of food;

however, there are some ways in which it could be improved. To begin with, in

order to enhance the level of interaction between the donor and receiver, I could

add a chat functionality that allows users to discuss the mode of donation (pick

up / drop) and other details. Furthermore, I could create a feature that allows the

user to use a long press to switch between the roles of donor and receiver, rather

than having to log out and visit the login page again (just like in Instagram). To

make the notification feature, I could also update it with the following features:

• Notifications for both users about the status of the food, the request sent by

the recipient, and whether the request has been approved or rejected.

• The ability for the Receiver to opt to receive notifications if a new food

donation is added to the listings.

Rather than making Share What You Can exclusive to Android, I could extend it

to iOS as well, allowing a wider range of users to take advantage of its features.

Finally, if the user were able to scan a QR code to provide the details of food,

instead of manually typing them, it could save them considerable time. Adding this

feature seems plausible since some food beverage packaging companies, including

Nestle, Coca-Cola, Top Fruit, and Nestle Waters North America, are already using

59

it (Rotsios et al., 2022). By utilizing QR codes, these companies are able to

determine the origin of the product.

60

References

Amarri, A., Corbi, A., Randall Smith, A., & Wu, A. (2015). Feed children in need
— ShareTheMeal — Charity donate. Retrieved 2022-11-23, from https://

sharethemeal.org?hl=en-US

Buzby, J. C., Farah-Wells, H., & Hyman, J. (2014). The Estimated Amount, Value,
and Calories of Postharvest Food Losses at the Retail and Consumer Levels
in the United States. SSRN Electronic Journal . Retrieved 2022-12-12, from
http://www.ssrn.com/abstract=2501659 doi: 10.2139/ssrn.2501659

Chen, C. R., & Chen, R. J. C. (2019). Using Two Government Food Waste
Recognition Programs to Understand Current Reducing Food Loss and
Waste Activities in the U.S. Sustainability , 10 (8), 2760. Retrieved
2022-12-14, from https://www.mdpi.com/2071-1050/10/8/2760 doi: 10
.3390/su10082760

Claire, B.-F., Byrdak, M., Fitzgerald, K., Hall, V., & Bernard, R. (2017).
MealConnect. Retrieved 2022-11-30, from https://mealconnect.org/

Francis, P. (2013). Pope Francis Quote. Retrieved 2022-11-11, from https://

www.azquotes.com/quote/1241311

Griffin, M., Sobal, J., & Lyson, T. A. (2022). An analysis of a community food
waste stream. Agriculture and Human Values , 26 (1), 67–81. Retrieved from
https://doi.org/10.1007/s10460-008-9178-1 doi: 10.1007/s10460-008
-9178-1

Hall, K. D., Guo, J., Dore, M., & Chow, C. C. (2009). The Progressive Increase of
Food Waste in America and Its Environmental Impact. PLoS ONE , 4 (11),
e7940. Retrieved 2022-12-12, from https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC2775916/ doi: 10.1371/journal.pone.0007940
Iaeme, I. (2013). ANDROID Vs iOS – AN ANALYSIS. International

journal of Computer Engineering & Technology (IJCET), 4 (1).
Retrieved 2022-12-13, from https://www.academia.edu/2958151/ANDROID

Vs iOS AN ANALYSIS

LiveData overview. (2022). Retrieved 2022-11-11, from https://developer

.android.com/topic/libraries/architecture/livedata

Nunley, M. (2013). From Farm to Fork to Landfill: Food Waste and Consumption
in America. Pitzer Senior Theses , 37 . Retrieved from https://scholarship

.claremont.edu/pitzer theses/37

Rotsios, K., Konstantoglou, A., Folinas, D., Fotiadis, T., Hatzithomas, L., &
Boutsouki, C. (2022). Evaluating the Use of QR Codes on Food Products.
Sustainability , 14 (8), 4437. Retrieved 2022-12-12, from https://www.mdpi

https://sharethemeal.org?hl=en-US
https://sharethemeal.org?hl=en-US
http://www.ssrn.com/abstract=2501659
https://www.mdpi.com/2071-1050/10/8/2760
https://mealconnect.org/
https://www.azquotes.com/quote/1241311
https://www.azquotes.com/quote/1241311
https://doi.org/10.1007/s10460-008-9178-1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775916/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775916/
https://www.academia.edu/2958151/ANDROID_Vs_iOS_AN_ANALYSIS
https://www.academia.edu/2958151/ANDROID_Vs_iOS_AN_ANALYSIS
https://developer.android.com/topic/libraries/architecture/livedata
https://developer.android.com/topic/libraries/architecture/livedata
https://scholarship.claremont.edu/pitzer_theses/37
https://scholarship.claremont.edu/pitzer_theses/37
https://www.mdpi.com/2071-1050/14/8/4437

61

.com/2071-1050/14/8/4437 doi: 10.3390/su14084437
Schanes, K., Dobernig, K., & Gözet, B. (2018). Food waste

matters - A systematic review of household food waste practices
and their policy implications. Journal of Cleaner Production, 182 ,
978–991. Retrieved 2022-12-14, from https://linkinghub.elsevier.com/

retrieve/pii/S0959652618303366 doi: 10.1016/j.jclepro.2018.02.030
Schill, A. (2022). Careit App: Donate Food, Feed People. Retrieved 2022-11-23,

from https://www.indiegogo.com/projects/2680406

U.S. Food Loss and Waste 2030 Champions. (2017). Retrieved 2022-12-13, from
https://www.usda.gov/foodlossandwaste/champions

https://www.mdpi.com/2071-1050/14/8/4437
https://www.mdpi.com/2071-1050/14/8/4437
https://www.mdpi.com/2071-1050/14/8/4437
https://linkinghub.elsevier.com/retrieve/pii/S0959652618303366
https://linkinghub.elsevier.com/retrieve/pii/S0959652618303366
https://www.indiegogo.com/projects/2680406
https://www.usda.gov/foodlossandwaste/champions

	Introduction
	Background
	Existing Solutions
	Proposed Solution

	Product requirements
	General public as food donors, not just food pantries
	System Description
	Screen Flow chart
	Use-case diagram

	Implementation
	Technologies and technical terms used
	Architecture
	Tech stack
	Client Architecture

	Project setup
	IDE Setup
	Firebase Setup

	Unit-Testing
	Results
	Limitations
	Conclusion
	Future Scope
	Bibliography
	References

