

AN ABSTRACT OF THE MASTER’S PROJECT REPORT OF

Siri Chandana Gangam for the degree of Master of Science in Computer Science

presented on December 7, 2022.

Title: Reshape, an Android Solution

Abstract approved:

Dr. Will Braynen

Reshape is a platform that enables you to rearrange the screens of an Android

mobile application without having to make any changes to the underlying source

code and so without having to re-upload the build to an app marketplace. This

can help reduce development costs and speed up deployment. This is similar to

A/B-testing solutions available today, but with a focus on reshaping screen flows

on the fly, which is a feature currently absent from those solutions. While Reshape

is a prototype built for Google’s Android platform and so focuses on obviating

the need to re-upload to Google Play, Google’s app marketplace, it is a proof of

concept that is not specific to Google Play and Android. The same idea can be

applied to Apple’s App Store and iOS, or in principle to any other distribution

platform. Reshape includes a Software Development Kit (SDK), a web portal,

and a backend that connects the two. The web portal shows a screen flowchart

for the mobile application, which reflects the actual order in which the screens

appear in the mobile application. Using the web portal, the Product Owner can

change the screen order without having to lean on the help of a software developer.

The Android SDK has the logic to rearrange the screens of the Android mobile

application based on the order received from the web portal via Reshape’s backend.

©Copyright by Siri Chandana Gangam
December 7, 2022
All Rights Reserved

Reshape, an Android Solution

by

Siri Chandana Gangam

A MASTER’S PROJECT REPORT

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented December 7, 2022
Commencement June 2023

Master of Science master’s project report of Siri Chandana Gangam presented on
December 7, 2022.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my master’s project report will become part of the permanent
collection of Oregon State University libraries. My signature below authorizes
release of my master’s project report to any reader upon request.

Siri Chandana Gangam, Author

ACKNOWLEDGEMENTS

It was my parents’ sacrifices that enabled me to remain committed to my education,

and I wish to thank them for that. I would like to express my gratitude to my

mentor, professor Dr. Will Braynen, for his guidance and challenging tasks along

this journey which enabled me to comprehend the concepts. I would like to thank

my committee members, Dr. Mike Bailey and Dr. Bella Bose, for their flexibility

regarding scheduling the exam. The contributions of Bhavana Bandam Reddy and

Yashoda in reviewing my code and helping me in maintaining the coding standards

are highly appreciated.

TABLE OF CONTENTS

Page

1 Introduction . 1

1.1 Background . 1

1.2 Problem statement . 3

1.3 Proposed Solution . 4

1.4 Use cases of the proposed solution . 5
1.4.1 A retail app . 6
1.4.2 Adding a deals page of flights at the correct point of user flow 10

2 Architecture . 11

2.1 Tech stack . 11
2.1.1 Kotlin . 11
2.1.2 ReactJS . 12
2.1.3 Firebase . 12

2.2 System Architecture . 13

2.3 Use case diagram . 14

2.4 Flowchart . 15

3 Implementation . 17

3.1 Basic setup . 17
3.1.1 Firebase setup . 17
3.1.2 ReactJS . 27
3.1.3 Kotlin setup . 29

3.2 Methodology . 31

4 Results . 40

5 Conclusion . 45

6 Scope of improvement . 46

Bibliography . 47

References . 47

LIST OF FIGURES

Figure Page

1.1 Mobile Application Development process 2

1.2 Order of screens in Instacart Android app 9

2.1 Tech stack . 11

2.2 Architecture . 13

2.3 Use Case Diagram . 15

2.4 Flowchart . 16

3.1 Firebase website . 17

3.2 Choose Project . 18

3.3 Creating a new project . 19

3.4 Enable or disable Google Analytics 20

3.5 Configure Google Analytics . 21

3.6 Project console . 22

3.7 Register application . 22

3.8 Add google-services.json . 23

3.9 Fill details of web app . 26

3.10 Create ReactJS project . 27

3.11 ReactJS project created . 28

3.12 Files generated . 28

3.13 Website . 29

3.14 Android studio - create project . 30

3.15 Fill details - Android Studio . 31

3.16 Store data . 38

LIST OF FIGURES (Continued)

Figure Page

4.1 Web portal screenshot . 40

4.2 Input . 41

4.3 Change in screen order confirmation 42

4.4 Screen flow of a mobile application 43

4.5 Order of screens in Android app . 44

Chapter 1: Introduction

1.1 Background

Mobile applications have gained enormous popularity since the invention of smart-

phones (Islam & Mazumder, 2010). The mobile application development process

involves different stages, including strategy, analysis, and planning, as well as user

interface design and user experience design, app development, testing, deployment,

and support, as shown the Figure 1.1. Identifying the project’s goals is the first

step in developing an application. The next step is to plan the schedule, calculate

the cost, refine the budget, and select the right team to work on the project. The

third step is to design the app’s appearance and determine how it can be devel-

oped to achieve the best user experience. The fourth step is to develop the app in

accordance with the app requirements. The most critical tasks must be prioritized.

After the code has been developed and tested, a unit test is performed to ensure

that the components are working fine individually (Umar, 2019). After the team

has developed a few features and is ready to upload the application to the app

marketplace, it conducts system and acceptance testing; deployment is initiated if

the requirements are met. To upload the application, the team must create a de-

veloper account for the app marketplace to which they want to upload. Compiled

binaries should be generated first. Then an application should be created on the

2

app marketplace console, and details like title, description, high-resolution icon,

product categorization, tags, and contact details will be requested in the console.

Figure 1.1: Mobile Application Development process

Then the generated compiled binaries must be uploaded. Details regarding

the application’s access rights and pricing, such as whether it is a free or paid

application, must be set up before the stable version is published. Once the app

is live, a team of developers will continually address the issues that real customers

3

(people who downloaded the app from the app marketplace) face and testing will

be performed in production. Once the application has been successfully tested, the

compiled binaries must be re-uploaded to the app marketplace. By repeating the

process of testing and deploying a functionally working build, developers find the

application bugs. This is the maintenance stage of mobile application development.

Every time a build needs to be re-uploaded, these steps (writing code, testing code,

and re-uploading the compiled binaries to the app marketplace) are repeated.

1.2 Problem statement

There are two ways to change the order of screens of the mobile application. One

way is to write the code, test the code, generate the compiled binaries and re-upload

the compiled binaries. The following code example illustrates how to navigate from

one screen to another in a mobile application written in Kotlin:

val i = Intent (this, NextActivity::class.java)

startActivity(intent)

Activities provide a user interface through which users may interact with an

application. In this case, NextActivity refers to the activity of the next screen

that contains code for how the screen should look (Sehgal, 2020). With this, the

Android operating system starts activity, which is passed in startActivity(). If

we want to land on a different screen, the activity name must be updated in the

code. The rest of the mobile application development process follows, as outlined

in section 1.1 (Test and add Android app bundles / APKs to production to make

4

the application available to everyone on the Google Play Store (C.G.,Thomas and

Devi,A.Jayanthila, 2021)). It would be helpful if we could avoid redeploying the

compiled binaries in those cases where we only need to reorder screens since the

deployment of the executable involves interaction and coordination between various

teams within the organization. This matters because there should be an efficient

recovery process in the event of an error; otherwise, the application, which is the

Play Store, will be impaired. Additionally, deploying compiled binaries is costly.

New versions of the app in the Android Play Store take a considerable amount of

time to reflect the new screen order if we re-upload the compiled binaries, as the

application has to undergo a review process before updating it.

Another way to reorder screens is using A/B testing frameworks such as Op-

timisely and Leanplum. In this case, you maintain a feature flag on the website

of an A/B testing framework. This feature flag is used in the mobile application’s

code in order to determine what should be the screen flow. This way of reordering

screens is better than the first way of reordering screens, as we do not have to

redeploy the compiled binaries every time we want to change the screen order.

However, it is not an optimum way to reorder screens as we have to define all

permutations you want in the mobile application code.

1.3 Proposed Solution

The proposed solution allows us to rearrange the screens without shipping the

newly compiled binaries to the Android Play Store (or simply ’Play Store’). An

5

Android SDK and a web portal are developed to solve this problem. The web portal

has a list of screens available in the Android mobile application. The Product

Owner can reorder those screens according to the requirements documented in the

requirements gathering phase. The developers can use Android SDK and change

the order of screens of the Android mobile application to align with the Product

Owner’s changes to the screen order in the web portal. The proposed solution

reduces the developers’ effort to change the code and saves the developers’ time,

so that developers can invest their time in developing something more important

than just modifying the order in which screens are presented. Apart from this,

the required screen order will be reflected in the Play Store very quickly, as we do

not have to redeploy the compiled binaries. We must update the screen order in

the web portal. The proposed solution is more effective when used in conjunction

with A/B testing. A/B testing is a technique to gather data that can help Product

Owners choose between different versions of the application in an empirical and

data-driven way. The A fork of the A/B test could, for example, be one screen

order while the B fork could be a different screen order.

1.4 Use cases of the proposed solution

In this section, I gave two sample use cases for Reshape: (1) a retail app and (2)

an app to book flight tickets.

6

1.4.1 A retail app

For example,the userflow of Instacart Android mobile application is shown in the

figure 1.2:

1. When the app is installed, the user will be prompted to log in or register.

2. If the user taps on ”Login”, it will take them to the login flow.

3. After login, the user will land on the dashboard.

4. On tapping on a specific product, the ”product description page” is pre-

sented.

5. Users can add the product they like to their shopping cart.

6. Once the user taps on “Add to cart”, the contents of the shopping cart are

presented.

7. Once the user taps on ”Go to checkout”, the “Order Confirmed” page is

presented.

If this screen flow is analyzed and the results indicate that many users are

landing on the login screen but not completing the journey and the business team

believes that this may be because users are being asked to log in before they can

see the product description, the business team might decide that users should be

asked to log in after clicking ”Place Order” on the cart page. To make these

changes, in the traditional process, the Product Owner would communicate about

7

8

9

Figure 1.2: Order of screens in Instacart Android app

10

the changes in the screen order with the developers. Then the developers would

change the code, test, and deploy. However, the Reshape platform allows Product

Owners to rearrange screens by changing the order in the web portal without the

help of developers.

1.4.2 Adding a deals page of flights at the correct point of user flow

. In order to increase the likelihood of users noticing the deals page, it should be

placed in the right location. The company may experience lower profits if those are

not added to the right place. A/B testing can be conducted by moving the deals

page to a location that you believe will attract customers. In order to ensure that

they are noticed, deals are usually posted on the ”Home page.” Reshape automates

this process of rearranging the screens.

11

Chapter 2: Architecture

2.1 Tech stack

Figure 2.1: Tech stack

2.1.1 Kotlin

The programming language used in this project to develop the mobile application

and SDK was Kotlin, which was created by JetBrains. I picked Kotlin for this

project for three reasons. The first reason is that application deployment with

Kotlin is faster and lighter when compared to Java and prevents applications from

growing in size, which results in fewer bugs. The second reason is that Kotlin

12

distinguishes between references that can hold null and those that cannot hold

null. Third reason is that it throws a compilation error if we try to hold null

for references that cannot hold null. Several features in Kotlin, including smart

casting and type inference, make coding easy.

2.1.2 ReactJS

ReactJS was used in this project to develop the web portal that is required to

display the screens present in the mobile application. I picked ReactJS for this

project for three reasons. The first reason is that, it is a JavaScript library that

is used to build interactive UI components with frequently changing data. In ad-

dition, it contributes to the development of rich user interfaces. Second reason is

that it offers fast rendering (Dani, Tomar, Srivastava, & Bindal, 2021). Third rea-

son is that components are reusable, and also custom components can be written.

Because of the modular structure, it is easier to maintain.

2.1.3 Firebase

Firebase was used in this project to develop the backend. It was designed to assist

in building, hosting, and promoting apps by monitoring them and boosting user

engagement. It supports Android, iOS, and web applications. Cloud Firestore is

used in this project to store the data of screens of the Android mobile application.

Cloud Firestore is also a database in which you can store data easily, and the

13

application data will stay synchronized with the cloud but is more structured.

It stores all the data in objects known as documents. Hence it is known as a

document-model database in which each document has a pair of keys and values.

Any kind of data can be stored in this database. It costs relatively less than a

Realtime database as it depends on how often the data is stored or retrieved.

2.2 System Architecture

In this system, data is stored in Firebase Firestore. The web portal is developed

using ReactJS.

Figure 2.2: Architecture

ReactJS has a component architecture. The user interface is simply a view that

14

consists of several React components beneath it that are simple structural units

like labels, buttons, and text input labels. A React component may hold state,

which is the information that the application needs to track in order to function. In

addition, the state of an application changes constantly as a result of user actions

that determine what displays on the UI.

2.3 Use case diagram

In this project, the web portal, which was developed in ReactJS, has information

related to screens that are present in the mobile application. That information

was stored in the Cloud Firestore data. Since Firebase Firestore was used in this

project, I didn’t need to handle server-side code. That data that is stored in the

Cloud Firestore is retrieved by the Android mobile application and when this screen

order is sent to the SDK (Software Development Kit) which can be integrated with

any mobile application, and SDK will change the order of the mobile application

according to the order set in the web portal.

15

Figure 2.3: Use Case Diagram

2.4 Flowchart

16

Figure 2.4: Flowchart

17

Chapter 3: Implementation

Reshape is a platform that enables the Product Owner to rearrange screens of

the Android application without actually redeploying the new code in the app

marketplace. The following steps were performed to make this happen

3.1 Basic setup

3.1.1 Firebase setup

Figure 3.1: Firebase website

18

I had to set up Firebase as I did not use any server for handling the backend.

I used Firestore for storing data.

3.1.1.1 Steps to create a database:

• Go to the official website of Firebase and click on “Go to console” as shown

in the figure 3.1.

• To add a new project, click on “Add project.” If the project is already added,

we can see the list of projects, as shown in the figure 3.2.

Figure 3.2: Choose Project

• Creating a new project:

19

On click of “Add project,” you will be taken to a create a project screen

where you will be asked to enter the name for the project, check “I confirm,”

and continue as shown in the figure 3.3.

Figure 3.3: Creating a new project

In the second step of setting up the firebase project, you will be asked if

you need Google Analytics for your project. You can either enable or disable

Google Analytics and click ”Continue” as shown in the figure 3.4

In the third step, you will be asked to configure Google Analytics. Then

you should accept the terms and conditions and click on “Create project” as

shown in the figure 3.5

20

Figure 3.4: Enable or disable Google Analytics

3.1.1.2 Steps to setup project in Firebase Cloud Firestore

Once the project is created, you will be taken to the project console as shown

in the figure 3.6:

Once the project is created, Firebase should be added to the application. An

application can be iOS, Android, or Web. I used the same database for both

the Web portal and the Android application. So, I had to add Firebase to

both Android and Web applications.

To add the Firebase to the Android application, click on the Android

21

Figure 3.5: Configure Google Analytics

icon. There will be four steps to add an Android application.

In the first step, you will have to register the application, It will ask

for a package name to be used in the Android app, an optional application

nickname, and a debug signing certificate that is also optional. Then you

will need to click ”Register app” as shown in the figure 3.7

The second step is to download and add google-services.json and add

it to the app-level root directory as shown in the figure 3.8.

22

Figure 3.6: Project console

Figure 3.7: Register application

23

Figure 3.8: Add google-services.json

The third step is to add the Firebase SDK In mobile application code,

build.gradle file which is in the root level should be updated as follows (plugin

should be added as a build script dependency).

buildscript {

24

ext.kotlin_version = ’1.6.21’

repositories {

google()

jcenter()

}

dependencies {

classpath ’com.google.gms:google-services:4.3.10’

}

}

allprojects {

repositories {

google()

jcenter()

}

}

At the module level, build.gradle file, I added google-services.json plu-

gin and the SDKs that are required.

apply plugin: ’com.google.gms.google-services’

dependencies {

implementation ’com.google.firebase:firebase-analytics’

25

implementation ’com.google.firebase:firebase-auth-ktx’

implementation ’com.google.firebase:firebase-firestore-ktx’

implementation ’com.google.firebase:firebase-database-ktx:19.7.0’

implementation ’com.google.firebase:firebase-firestore:21.4.0’

}

repositories {

mavenCentral()

}

To add Firebase to a web application, click on the web icon, and you

will land on the screen 3.9.

There are two steps that needs to be followed to add Firebase to a web

application:

Initially, I provided the name for the web application. I did not want

to host the web application, so I did not check the Firebase Hosting option.

26

Figure 3.9: Fill details of web app

The second step is to add Firebase SDK to the web app code, I have

added the following code.

import { initializeApp } from "firebase/app";

const firebaseConfig = {

apiKey: "AIzaSyBRGZT2zUANDb510Cdn7RlGwORLRSc3VWI",

authDomain: "rearrangescreens.firebaseapp.com",

databaseURL:"https://rearrangescreens-default-rtdb.firebaseio.com",

projectId: "rearrangescreens",

27

storageBucket: "rearrangescreens.appspot.com",

messagingSenderId: "616944017165",

appId: "1:616944017165:web:6cc5e70a69b282bc3f9a44",

measurementId: "G-BS1HJ1C09Q"

};

export const app = initializeApp(firebaseConfig);

3.1.2 ReactJS

The following steps were followed in order to set up a ReactJS project as shown

in the figure 3.10.

Figure 3.10: Create ReactJS project

28

Figure 3.11: ReactJS project created

With this, the basic setup for the ReactJS project is done. The following files

are generated as shown in the figure 3.12.

Figure 3.12: Files generated

To run the project, following steps are followed:

cd r e a r r ang e s c r e en s

npm s t a r t

29

Figure 3.13: Website

3.1.3 Kotlin setup

Android Studio should be installed prior to the steps which are listed below. After

opening Android Studio, click on “New project.” You will get to choose the target

device and the template as shown in the figure 3.14:

After clicking on “Next,” you will see a screen that prompts you to choose a

name for the project, choose a package name for the project, change the project’s

save location, change the language in which you want to build the project (Java

or Kotlin), choose a minimum SDK, and click ”Finish.” Once you have done these

things, setup is complete.

Dependencies are added.

30

Figure 3.14: Android studio - create project

dependencies {

implementation fileTree(dir: ’libs’, include: [’*.jar’])

implementation "org.jetbrains.kotlin:kotlin-stdlib-

jdk7:$kotlin_version"

implementation ’androidx.appcompat:appcompat:1.1.0’

implementation ’androidx.core:core-ktx:1.2.0’

implementation ’androidx.constraintlayout:constraintlayout:1.1.3’

}

31

Figure 3.15: Fill details - Android Studio

3.2 Methodology

The screen configuration of the mobile application was written in the web portal

code.

const data = [

{

"current": 1,

prev: null,

32

"one": 2,

"two": 9,

"path": "images/screen1.png",

height: 484,

width: 195,

position: {

x: 0, y: 180

}

}, {

"current": 2,

prev: { current: 1, button: "one" },

"one": 3,

"two": 4,

"path": "images/screen2.png",

height: 296,

width: 161,

position: {

x: 242, y: 70

}

}, {

"current": 3,

prev: { current: 2, button: "one" },

"one": 5,

33

"two": -1,

"path": "images/screen3.png",

height: 193,

width: 166,

position: {

x: 483, y: 15

}

}, {

"current": 4,

prev: { current: 2, button: "two" },

"one": 6,

"two": -1,

"path": "images/screen4.png",

height: 169,

width: 172,

position: {

x: 483, y: 281

}

}, {

"current": 5,

prev: { current: 3, button: "one" },

"one": 7,

"two": -1,

34

"path": "images/screen5.png",

height: 241,

width: 175,

position: {

x: 750, y: 15

}

}, {

"current": 6,

prev: { current: 4, button: "one" },

"one": 8,

"two": -1,

"path": "images/screen6.png",

height: 205,

width: 170,

position: {

x: 750, y: 281

}

}, {

"current": 7,

prev: { current: 5, button: "one" },

"one": 0,

"two": -1,

"path": "images/screen7.png",

35

height: 184,

width: 158,

position: {

x: 1033, y: 15

}

}, {

"current": 8,

prev: { current: 6, button: "one" },

"one": 0,

"two": -1,

"path": "images/screen8.png",

height: 165,

width: 163,

position: {

x: 1033, y: 281

}

}, {

"current": 9,

prev: { current: 1, button: "two" },

"one": 10,

"two": -1,

"path": "images/screen9.png",

height: 233,

36

width: 157,

position: {

x: 242, y: 522

}

}, {

"current": 10,

prev: { current: 9, button: "one" },

"one": 1,

"two": -1,

"path": "images/screen10.png",

height: 234,

width: 152,

position: {

x: 483, y: 516

}

}

]

Here, current is the current screen number, and prev identifies whether there

is a screen before the current one. A null value is set for prev when there is no

screen; otherwise, the following information should be added:

prev:

{

current : 9,

37

button : "one"

}

current refers to the previous screen number, and button refers to the

button on which it reached this screen. one refers to the screen number on which

it will land upon clicking the first button. two refers to the screen number on

which it will land upon clicking the second button of the screen. path has the

path where a particular image to that screen is located. Here, height, width are

the dimensions of the image which represents the screen. position says where

exactly that image should be located in the screen.

This data is stored in the Cloud Firestore database as shown in the figure 3.16.

This data is retrieved from the mobile application and rearranging happens

according to the screen order received from the database. RearrangeScreensModule

SDK has a function which will be used to decide what the next screen should be.

pageChanger (activity: Activity, screenNum: Int = -5,

state: Int = 0)

Name of the activity, screen number, and state will be passed to the function

pageChanger, where state will be 0 if the first button in the screen is clicked and 1

if the second button is clicked. Traditionally, we move from one screen to another

screen using

val i = Intent (this, NextActivity::class.java)

startActivity(i)

38

Figure 3.16: Store data

39

We replace the above code with

Global2.pageChanger(this, 1)

This says that the first button is clicked so the third argument (0 is taken

by default) is not passed and ”1” is the screen Number that must match the

configuration that is written in the web portal.

40

Chapter 4: Results

The web portal developed to reorder the screens is shown in Figure 4.1.

Figure 4.1: Web portal screenshot

Screens are arranged to represent the screen flow. If the Product Owner chooses

to rearrange screens 9 and 10, he/she needs to write the number assigned to a

particular screen that he/she wants to rearrange. in the text boxes as shown in

Figure 4.2.

Once the ”Replace” button is pressed, the screen order will be changed. Once

the new order is saved in the Firestore, a popup will come as shown in Figure 4.3.

41

Figure 4.2: Input

Screen flow will be modified based on the screen order stored in the database

as shown in Figure 4.4.

Once the screen order is changed in the web portal, the order of screens in the

mobile application also changes, as shown in Figure 4.5.

42

Figure 4.3: Change in screen order confirmation

43

Figure 4.4: Screen flow of a mobile application

44

Figure 4.5: Order of screens in Android app

45

Chapter 5: Conclusion

Reshape is a platform for mobile apps that allows the screens of a mobile applica-

tion to be changed remotely without having to publish an app update. When an

Android app is updated, it must be reviewed by the Google Play Store, which can

take 24 to 48 hours or even longer. But with Reshape, the Product Owner can

immediately reorder the screens of an application already live in the app market-

place. However, there are a few limitations. The screens that the Product Owner

wants to rearrange must be independent of each other. This means that if the

Product Owner wants to exchange the current screen and a screen that displays

data that depends on the response from the API call that happens on the current

screen, they will be unable to use Reshape to do so. Also, Reshape was developed

for screens that have a maximum of two buttons but could be extended for use

with screens with more buttons.

46

Chapter 6: Scope of improvement

Currently, Reshape can rearrange the screens of an Android application. It will be

possible to extend this functionality to iOS applications as well. It would also be

helpful if Reshape could rearrange dependent screens. Screen configuration of the

Android mobile application is another area that can be automated. Also, the UI

of the web portal of Rearrange Screens can be more interactive.

47

References

C.G.,Thomas and Devi,A.Jayanthila. (2021). A Study and Overview of the
Mobile App Development Industry. International Journal of Applied
Engineering and Management Letters , 5 (1), 115–130. Retrieved
2022-12-13, from https://srinivaspublication.com/wp-content/

uploads/2021/06/10.-A-study-and-overview Fullpaper.pdf doi:
10.47992/IJAEML.2581.7000.0097

Dani, D., Tomar, V., Srivastava, V., & Bindal, V. (2021). A Research Paper on
Football Website Development Using ReactJS/Firebase. International
Journal of All Research Education Scientific Methods , 9 (7), 9. Retrieved
from http://www.ijaresm.com/a-research-paper-on-football

-website-development-using-reactjs/firebase

Islam, D. M. R., & Mazumder, T. (2010). Mobile application and its global
impact. International Journal of Engineering & Technology , 10 (6), 72–78.
Retrieved from https://www.researchgate.net/publication/

308022297 Mobile application and its global impact

Sehgal, T. (2020). Google Login and Logout in Android With Firebase (Kotlin
Implementation). Retrieved 2022-11-23, from
https://medium.com/swlh/google-login-and-logout-in-android-with

-firebase-kotlin-implementation-73cf6a5a989e

Umar, M. A. (2019). Comprehensive study of software testing: Categories, levels,
techniques, and types. International Journal of Advance Research, Ideas
and Innovations in Technology , 5 , 32-40. Retrieved from
https://www.semanticscholar.org/paper/

Comprehensive-study-of-software-testing%3A-levels%2C-Umar/

a917c32fef7b8fc2a515b1ce7e7daa5128ee735a

https://srinivaspublication.com/wp-content/uploads/2021/06/10.-A-study-and-overview_Fullpaper.pdf
https://srinivaspublication.com/wp-content/uploads/2021/06/10.-A-study-and-overview_Fullpaper.pdf
http://www.ijaresm.com/a-research-paper-on-football-website-development-using-reactjs/firebase
http://www.ijaresm.com/a-research-paper-on-football-website-development-using-reactjs/firebase
https://www.researchgate.net/publication/308022297_Mobile_application_and_its_global_impact
https://www.researchgate.net/publication/308022297_Mobile_application_and_its_global_impact
https://medium.com/swlh/google-login-and-logout-in-android-with-firebase-kotlin-implementation-73cf6a5a989e
https://medium.com/swlh/google-login-and-logout-in-android-with-firebase-kotlin-implementation-73cf6a5a989e
https://www.semanticscholar.org/paper/Comprehensive-study-of-software-testing%3A-levels%2C-Umar/a917c32fef7b8fc2a515b1ce7e7daa5128ee735a
https://www.semanticscholar.org/paper/Comprehensive-study-of-software-testing%3A-levels%2C-Umar/a917c32fef7b8fc2a515b1ce7e7daa5128ee735a
https://www.semanticscholar.org/paper/Comprehensive-study-of-software-testing%3A-levels%2C-Umar/a917c32fef7b8fc2a515b1ce7e7daa5128ee735a

	Introduction
	Background
	Problem statement
	Proposed Solution
	Use cases of the proposed solution
	A retail app
	Adding a deals page of flights at the correct point of user flow

	Architecture
	Tech stack
	Kotlin
	ReactJS
	Firebase

	System Architecture
	Use case diagram
	Flowchart

	Implementation
	Basic setup
	Firebase setup
	ReactJS
	Kotlin setup

	Methodology

	Results
	Conclusion
	Scope of improvement
	Bibliography
	References

