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Abstract

Using supervised machine learning (ML) to train a computer vision model typically requires
human annotators to label objects in images and video. Given a large training dataset, this
can be labor intensive, presenting a significant bottleneck in the model-development process.
LabelFlicks is an open-source desktop application that aims to address this pain point with
three helpful ML-assisted features: (1) a streamlined preprocessing pipeline to convert videos
into a series of frames, (2) pre-labeling of video frames using an object detection model pre-
trained on the COCO dataset that ships with LabelFlicks, (3) an ML-assisted human-in-the-
loop workflow for correcting bounding box labels. For each frame of the video(s) provided by
the user, LabelFlicks produces a text file containing labeled bounding boxes in the COCO
annotation format. These datasets can be analyzed (e.g. for finding biases in data slices) or
used to train or finetune an object detection model of your choice using model training tools
such as PyTorch or TensorFlow.

i



Acknowledgments

I would like to thank my advisor, Dr. Will Braynen, for his valuable software engineering
advice and helping to improve my development process throughout the project.

I would like to thank my committee members, Dr. Margaret Burnett and Dr. Stefan
Lee, for teaching excellent classes in human-computer interaction and deep learning and for
accommodating my last-minute requests.

I would like to thank Dr. Minsuk Kahng for taking a chance on me when I was an undergrad
and nurturing my interest in HCI + AI research.

Finally, I would like to thank my friends and family for all their unconditional love and
support. I would never have made it this far without them.

ii



Table of Contents

1 Introduction 1

2 Existing Solutions 3

3 Proposed Solution 5

4 Implementation 7

4.1 Desktop Application and User Interface . . . . . . . . . . . . . . . . . . . . . 8

4.2 PostgreSQL Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 FastAPI Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Scope and Current Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Future Work 40

5.1 Custom Dataset Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Use IML to Train While Labeling . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Testing Computer Vision Models . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Conclusion 46

References 47

iii



List of Figures

2.1 Example Bounding Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Human-in-the-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.1 LabelFlicks Dependency Diagram . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Home screen with project creation modal . . . . . . . . . . . . . . . . . . . . 9

4.3 Home screen with listed projects . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.4 Home screen class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.5 Video upload screen with upload modal . . . . . . . . . . . . . . . . . . . . . 11

4.6 Video upload screen with listed videos . . . . . . . . . . . . . . . . . . . . . 12

4.7 Video upload screen class diagram . . . . . . . . . . . . . . . . . . . . . . . . 13

4.8 Preprocessing screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.9 Preprocessing screen class diagram . . . . . . . . . . . . . . . . . . . . . . . 15

4.10 Labeling screen initially loaded . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.11 Labeling screen portion with individual box selection . . . . . . . . . . . . . 17

4.12 Labeling screen with some human-reviewed frames . . . . . . . . . . . . . . . 18

4.13 Labeling screen after navigating with labeling timeline . . . . . . . . . . . . 18

4.14 Labeling screen with some labeling timelines marked "hidden" . . . . . . . . 19

4.15 Labeling screen with create label modal . . . . . . . . . . . . . . . . . . . . . 20

4.16 Labeling screen with label dropdown . . . . . . . . . . . . . . . . . . . . . . 21

iv



4.17 Labeling screen with some corrected labels . . . . . . . . . . . . . . . . . . . 21

4.18 Labeling screen AI-assistance button . . . . . . . . . . . . . . . . . . . . . . 22

4.19 Labeling screen class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.20 Export labels screen showing local save path . . . . . . . . . . . . . . . . . . 24

4.21 Export labels screen class diagram . . . . . . . . . . . . . . . . . . . . . . . . 25

4.22 Database entity-relationship diagram . . . . . . . . . . . . . . . . . . . . . . 26

4.23 Backend class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.24 FastAPI endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.25 Sequence diagram: home screen . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.26 Sequence diagram: video upload screen . . . . . . . . . . . . . . . . . . . . . 30

4.27 Sequence diagram: preprocessing screen . . . . . . . . . . . . . . . . . . . . . 32

4.28 Sequence diagram: initial loading of the labeling screen . . . . . . . . . . . . 33

4.29 Sequence diagram: navigating between frames on the labeling screen . . . . . 34

4.30 Sequence diagram: AI-assistance on the labeling screen . . . . . . . . . . . . 35

4.31 Sequence diagram: labeling screen create and delete interactions . . . . . . . 36

4.32 Sequence diagram: export labels . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



1. Introduction

Arti�cial intelligence (AI) has become a much-hyped research area in the last several years,

driven mainly by the impressive results from machine learning (ML) and deep learning (DL)

methods. Nowadays, people can create digital art using generative adversarial networks,

write reports with the help of large language models, and even ride in self-driving cars

powered by computer vision models.

A lot of labeled data is typically needed to train these highly capable models using supervised

DL methods. Data labeling in some domains can be done automatically � for example, text

data can be scraped from all over the Internet and chopped into phrases to train language

models to predict the next most likely word in a sentence. Labeling images and videos,

however, is a more complex task and requires human labor. The data labeling step necessary

for most advanced DL models that consume complex visual data has become a bottleneck

in the overall DL development process.

LabelFlicks is an open-source desktop application that aims to address this pain point with

three helpful ML-assisted features: (1) a streamlined preprocessing pipeline to convert videos

into a series of frames, (2) pre-labeling of video frames using an object detection model pre-

trained on the COCO dataset that ships with LabelFlicks, and (3) an ML-assisted human-

in-the-loop work�ow for correcting bounding box labels. For each frame of the video(s)

provided by the user, LabelFlicks produces a text �le containing labeled bounding boxes in

the COCO annotation format. These datasets can be analyzed (e.g. for �nding biases in

data slices) or used to train or �netune an object detection model of your choice using model

training tools such as PyTorch or TensorFlow. The �Future Work� section of this report

will discuss how LabelFlicks could be extended to support creating computer vision datasets

without assuming a baseline detection model, as well as iteratively train or test a trained

model using human-in-the-loop work�ows.

This report will �rst provide a brief survey of the computer vision landscape and existing

video labeling tools (Section 2). I will then give an exhaustive overview of the technical
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implementation details of the LabelFlicks application (Sections 3 and 4). The "Future Work"

section will discuss how LabelFlicks could be extended to support creating computer vision

datasets without assuming a baseline detection model, as well as how LabelFlicks could

support iteratively train or test a trained model using human-in-the-loop work�ows (Section

5).
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2. Existing Solutions

Computer vision is a �eld of AI that focuses on creating models that can process visual

data, such as images and videos. Object detection is one of the core tasks that computer

vision models are trained to do. It's used in various applications every day�for example,

helping your phone �nd people and objects in your photo library or helping self-driving cars

identify road signs and pedestrians. Object detection models are trained to identify regions

of images, represented with bounding boxes, and classify each as a speci�c type of object,

such as a tree, chair, or table as in the example provided in Figure 2.1.

Figure 2.1: Example image containing labeled bounding boxes for detected trees, tables, and
chairs from the TensorFlow Object Detection Tutorial. [1]

The process for developing a supervised ML model generally follows this pattern: collect the

training data, prepare the data, train the model, evaluate and deploy the model. ML models

learn from examples, and the more high-quality training data they can get, the better they
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will learn. Training object detection models typically requires many thousands of example

images that have been manually annotated with bounding boxes and classi�cation labels,

which is a hugely time-consuming and expensive process [2].

The AI community has recognized that data labeling can be a huge bottleneck in the overall

process and many data labeling tools have developed over the last several years to address

this pain point.

Many companies o�er advanced video annotation features to automate parts of the video

annotation process, but they are restricted behind paywalls. Companies, such as SuperAn-

notate, V7, Labelbox, Supervisely, CVAT, and Dataloop, o�er video annotation tools that

can be used for all video �le formats, can annotate videos while playing them at their na-

tive frame rate, can interpolate annotations between two points in time, and can support

real-time collaboration. Some of these platforms even o�er ML-assisted labeling work�ows

and a way to hire professional labeling teams. These are highly advanced tools but they

are inaccessible to most non-enterprise customers, such as tech hobbyists, researchers, and

students.

Several open-source video annotation platforms exist as alternatives, such as Universal Data

Tool, UltimateLabeling, and Label Studio, and they generally o�er similar features as the

paid solutions: there are ways to label online or o�ine, with or without collaborators, and

for a variety of computer vision tasks. Label Studio even o�ers a way to attach an �ML

backend� to train a model while labeling, but it requires some coding to set up. None of

these open-source tools o�er an ML-assisted human-in-the-loop labeling work�ow out of the

box.
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3. Proposed Solution

LabelFlicks aims to address the data labeling issue in computer vision pipelines by providing

an open-source implementation of a video annotation tool with an AI-assisted, human-in-

the-loop labeling work�ow with no code setup required.

Human-in-the-loop means that humans are involved in the AI development process, including

the data collection, preprocessing, model training, and evaluation phases [3]. Human-in-the-

loop systems can be thought of as a way to selectively include meaningful, human feedback

into automated systems such that the overall system is more e�cient and takes advantage

of the strengths of both human capabilities and computer processors [4], as shown in Figure

3.1. Human-in-the-loop includes concepts such as Interactive Machine Learning (IML), which

is �an interaction paradigm in which a user or user group iteratively builds and re�nes a

mathematical model to describe a concept through iterative cycles of input and review� [5].

Figure 3.1: General outline of a human-in-the-loop system

LabelFlicks applies an iterative review approach similar to IML, but it applies it to the data

labeling process rather than the model training process. Instead of iteratively correcting

the model's predictions during the training process in order to improve the �nal model,

LabelFlicks allows the user to iteratively correct the label predictions made by a small,

assistive ML model in order to make later label predictions more accurate and accelerate
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the labeling process. The end goal is still the same for both systems: to reduce the e�ort

required by the human user as the system is iteratively trained to better understand the

target concepts. Desmond et al. from IBM Research conducted user studies to investigate

the impact of AI-assisted data labeling and found that �the accuracy of human labeling

can be improved with relatively weak AI support� [6]. LabelFlicks aims to improve labeling

accuracy through the use of a relatively weak AI-supported interface as well, but for visual

data rather than text data as was used in the study.

The Implementation section will dive into the technical details regarding how the LabelFlicks

proof of concept (PoC) was constructed. The Future Work section will describe how La-

belFlicks could expand its capabilities to implement model-training IML in the future, along

with other technical improvements that would make it suitable for other use cases as well.
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4. Implementation

The bird's eye view of the LabelFlicks architecture is provided in Figure 4.1. The LabelFlicks

code is contained in two GitHub repositories � LabelFlicks-backend and LabelFlicks-desktop

� representing the backend and frontend components of the whole system. The backend

implements a REST API that is consumed by the frontend, meaning the API serves as a

common �contract� for expected inputs and outputs. The REST API abstraction of the

backend allows these two major components to be decoupled so that sub-components, such

as the JavaScript framework or database, can be modi�ed or replaced without a�ecting the

other major component. Both frontend and backend components will be described in detail

in the following subsections.

Figure 4.1: LabelFlicks Dependency Diagram outlining the major components of the frontend
and backend
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4.1 Desktop Application and User Interface

The frontend component of LabelFlicks is a desktop application built using Electron and

Svelte. Electron is an open-source framework for building cross-platform apps using HTML

and JavaScript, and Svelte was the chosen JavaScript framework for more quickly building

the UI. The following subsections will provide a walkthrough of the interactions available on

each main screen as well as a class diagram of their dependencies.

4.1.1 Home Screen

The LabelFlicks home screen is simple and streamlined, as seen in Figure 4.3, containing only

the name of the application, a list of current projects, and a big green button for creating

a new project. When a user clicks on the button, a modal appears (shown in Figure 4.2),

allowing them to provide a name and create a new project. Future improvements could

enhance the design of this landing page, but for the PoC, the main focus of this page is on

the creation of a new project or selection of an existing project.

The home screen is also the �rst place where the user sees the application's navigation bar

along the top of the screen. After the home screen, there are four steps that the user will

follow to produce their object detection dataset and they are labeled accordingly on the

navigation bar: (1) Upload Videos, (2) Preprocess Videos, (3) Label Videos, and (4) Export

Labels.

The class diagram for the home screen is provided in Figure 4.4 and it shows the key depen-

dencies required to render the page.
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Figure 4.2: Home screen with modal for creating a new project

Figure 4.3: Home screen with one project listed

9




	Introduction
	Existing Solutions
	Proposed Solution
	Implementation
	Desktop Application and User Interface
	PostgreSQL Database
	FastAPI Server
	Scope and Current Limitations

	Future Work
	Custom Dataset Creation
	Use IML to Train While Labeling
	Testing Computer Vision Models

	Conclusion
	References

