
College of Engineering
Electrical Engineering and Computer Science

Software Innovation Lab
Master’s Project Report

Anush Suresh Kumar

HawkerHub
A community-driven hawker discovery platform

Defended 15th March, 2023
Commencement June, 2023

Abstract

Technology has played a significant role in transforming the way businesses operate in recent
years. It has helped businesses reach an extensive consumer base, improve operations, and
increase revenue. Thanks to online food-delivery systems, restaurants can now reach cus-
tomers who may not have been able to visit their brick-and-mortar locations. In developing
countries, however, because of the low literacy rate and lack of awareness, the adoption of
technology by small businesses, hawkers, and street vendors is slow. These small businesses,
street vendors, and hawkers need their community’s support to sustain and grow.

HawkerHub is a crowd-sourced, community-driven hawker discovery and indexing mobile
application focused on enabling technology for street vendors, hawkers, and small businesses.
This application, built on a mobile platform, aims to gather current and accurate information
on these vendors to locate them quickly. It is an all-inclusive mobile application with an
easy-to-use UI and simple and rapid contribution steps. By adopting these technologies,
hawkers can focus on what they do best - serving the community while leaving the rest to
technology.

i

Acknowledgments

I wish to express my deepest gratitude to my adviser, Dr. Will Braynen, for his invaluable
guidance and encouragement. He has always been supportive of my efforts and compassionate
with me. His wisdom and work ethic will continue to inspire me in both my professional and
personal life.

I want to thank my committee members, Dr. Mike Bailey and Dr. Arash Termehchy, for
making time in their busy schedules. Their support and feedback have been very valuable.

Thanks to Bikram Pandit for his continuous support and patience during the technical review
process.

Finally, I would like to thank my parents, sister, and family for their unconditional love and
support. Thank you, everyone.

ii

Table of Contents

Abstract i

Acknowledgments ii

1 Introduction 1

2 Motivation 3

3 Existing Solutions 5

3.1 Google Maps . 5

3.2 Online Delivery Platforms . 6

4 Proposed Solution 7

5 Technology Stack 8

5.1 Flutter and Dart . 8

5.2 Amazon Web Services (AWS) . 9

6 User Interface Design 11

6.1 Market Survey - Design and Usability Study 11

6.2 Figma Prototypes . 15

7 System Architecture 18

iii

7.1 Resources . 19

7.2 Frontend Architecture . 20

7.3 Backend Architecture . 22

8 API Documentation 26

8.1 RESTful APIs . 26

8.2 Swagger Document . 28

9 Testing 29

9.1 Unit Testing . 29

9.2 Widget Testing . 30

10 Application Screenshots 31

11 Future Developments 37

12 Conclusion 38

References 39

iv

List of Figures

1.1 Street vendors of New York . 1

4.1 HawkerHub application logo . 7

6.1 Google Maps application screenshots . 12

6.2 Waze application screenshots . 12

6.3 Uber application screenshots . 13

6.4 Lyft application screenshots . 13

6.5 Landing page and Hub exploration flow . 16

6.6 Hub contribution flow . 17

6.7 Hub update flow . 17

7.1 System architecture . 18

7.2 MVVM example . 21

8.1 Swagger document . 28

10.1 Landing page . 31

10.2 Landing page Interactions . 32

10.3 Hubs vertical card . 33

10.4 Hub contribution screen . 34

10.5 Hub data collection . 35

v

10.6 Suggest edit screen . 36

vi

1. Introduction

In the last five years, street vendor businesses have grown by about 9% in the US [1]. These
numbers are much more significant in developing nations. It was reported in 2022 that
about 5 million street vendor establishments exist in India [2]. Hawkers and street vendors
sell goods and services on the streets, sidewalks, or other public places. They typically
operate without a permanent storefront or shop and may move from location to location to
find customers.

Both hawkers and street vendors are often found in urban areas and are essential to the
informal economy. They are often associated with selling food, clothing, jewelry, and other
small items. They provide necessary goods and services to their local communities and can
be an essential source of income for those who participate in this type of work.

Figure 1.1: Arkhipov, Roman. Street Vendors of New York. August 13, 2016. Unsplash.
https://unsplash.com/photos/4hxEOapTQGU.

1

Developing countries face several challenges regarding technology adoption and literacy
among hawkers. Many hawkers in developing countries need help accessing computers or
smartphones, making it challenging to adopt technology-based solutions. This is particularly
true in rural areas, where access to the internet and other technology infrastructure is often
limited.

Hawkers and street vendors often suffer from limited literacy and digital skills. They may
struggle to adopt new technology solutions without adequate training and support and fully
realize their potential benefits.

Even when technology is available, the high cost of devices and services can be a signif-
icant barrier to adoption for many small businesses in developing countries. This can be
particularly challenging for those with limited financial resources.

Providing access to affordable and user-friendly technology solutions and adequate training
and support is vital to overcome the above-mentioned challenges. Local communities need
to contribute to enabling and fostering trust in technology among these small businesses,
hawkers, and street vendors.

2

2. Motivation

Support of the local community is essential for its businesses to flourish and sustain. Big
establishments have abundant resources and are equipped with the tools and human resources
to stay current with technological advancements and cater to the needs current generation.
However, small establishments like hawkers, street vendors, and food carts, especially in
developing countries, largely depend on their existing customer base to keep their businesses
running. They are often under pressure to adopt current trends even though they are not
comfortable with its operation and fall prey to its vulnerabilities. One such incident was the
Quick Response (QR) code scam in India [3].

In India, the Unified Payments Interface (UPI) has become a popular mode of payment
for millions of people. QR code scams are a form of UPI payment fraud where scammers
create fake QR codes and trick users into scanning them to make payments. These fake QR
codes then redirect users to a payment gateway controlled by the scammers, resulting in the
transfer of funds to their accounts. Because UPI is very prevalent, small businesses were
forced to incorporate them and fall prey to scams.

On the other hand, consider a situation where people have recently moved to a new area
or even tourists exploring the area. They face many challenges, such as language barriers,
accessibility issues, trustability, and cost constraints. Hence, these people resort to conve-
nient yet expensive solutions like consulting a moving company to set up their new home or
using online delivery platforms to fulfill their needs. Even though it can be convenient, they
are not utilizing the cheaper and faster local businesses near them primarily for the above
reasons. This situation creates a need for a platform to index local small businesses that
are not enabled with technology tools and education to be discovered, providing adequate
details to overcome the aforementioned challenges.

Social media platforms are very popular these days. There is a large amount of data about
hawkers and street vendors scattered across multiple social media platforms. This infor-
mation has been shared by social media influences, food bloggers, and content creators.

3

However, it is hard to consolidate this information as one must follow multiple platforms
and subscribe to these specific creators. A single platform where people can contribute is
essential for data accuracy and to have the ability to search.

By having a searchable social platform for small businesses like hawkers, street vendors, and
food trucks, we can help our local community sustain and grow. Especially in situations like
the COVID-19 pandemic, which immensely affected these businesses because they could not
adapt to the current situation, it is a strong motivation for such a platform. Residents of
Singapore have initiated one such initiative [4].

Singapore is known for its hawker centers, open-air complexes with multiple stalls selling
affordable and delicious food. However, the rise of modernization and the pandemic led to
the closure of some of these centers. In response, the community mapped out the locations
of the remaining hawker centers and stalls in a shared google map so that they could be
swiftly discovered.

The mapping efforts began with volunteers who started a “Hawker Mapping” project. The
project aims to create a comprehensive map of all hawker centers and stalls in Singapore,
including their locations, opening hours, and menus. The information is crowdsourced from
the public, who can submit updates and corrections through the project’s website. When
writing this report, the project had about 1.5 million views. This demonstrates how the local
community can play a crucial role in preserving small businesses in the face of modernization.

4

3. Existing Solutions

3.1 Google Maps

Google Maps is a multi-platform mapping service launched by Google in 2005. It allows users
to search for locations, get driving directions, explores businesses and landmarks, and even
view street-level imagery. It has made it easier for businesses to connect with customers by
allowing them to create a business profile and manage their online presence. It has benefited
establishments that may not have the resources to develop their website or digital marketing
strategy. However, in the case of small businesses like hawkers, street vendors, and food
trucks, there are some shortcomings.

Limited Visibility: It prioritizes established businesses and well-known landmarks, making
it difficult for smaller, informal businesses like street vendors to stand out. This can limit
their visibility to potential customers who may not be aware of their presence.

Lack of information: Google Maps typically only provides basic information about a business,
such as its name, address, and hours of operation. For street vendors and hawkers, more
information may be needed to convey the unique aspects of their business, such as the types
of food they sell or the atmosphere of their location.

In some cases, hawkers and street vendors may not have a fixed location and move around
frequently, making it difficult to represent them accurately on a map. Additionally, street
vendors’ types of foods and products can vary widely depending on the culture and location,
making providing accurate information about their businesses challenging.

Overall, Google Maps has become an indispensable tool for navigating the world around
us, whether exploring a new city or trying to find the nearest coffee shop. Its accuracy,
comprehensive mapping data, and user-friendly interface have made it a favorite among
millions of people worldwide. Hence, the HawkerHub platform heavily depends on Google
Maps, adding more essential features for hawkers.

5

3.2 Online Delivery Platforms

Online delivery platforms, known as food delivery apps, have become increasingly popular
in recent years. These platforms allow users to order food and deliver it to their doorstep,
often within minutes. Some popular service providers in the United States include Uber
Eats, DoorDash, GrubHub.

These platforms also benefit restaurants by providing them with an additional revenue
stream. Restaurants can partner with delivery platforms to expand their customer base
and reach a wider audience. Additionally, online delivery platforms often provide marketing
and promotional support for their restaurant partners, helping them to increase visibility
and attract new customers.

However, there are also some potential drawbacks to online delivery platforms. One issue
is these platforms’ high fees, which can burden smaller restaurants. Additionally, there are
concerns about the working conditions and compensation for delivery drivers, who may not
receive benefits or a fair wage.

Online delivery platforms are typically designed for businesses with a fixed location and
a set menu. For hawkers and street vendors who may move around frequently and offer a
broader range of food options, it cannot be easy to represent their business on these platforms
accurately.

Delivery logistics can be difficult for street vendors and hawkers who may not have a ded-
icated delivery person or vehicle. This can make it challenging for them to offer delivery
services, which can limit their potential customer base.

Overall, while online delivery platforms can be a helpful tool for established restaurants and
food businesses, they may not be the best option for smaller, informal businesses like hawkers
and street vendors. These businesses may need to explore alternative marketing and sales
strategies more compatible with their business model and resources.

6

4. Proposed Solution

A mobile platform built on Google Maps for discovering and collecting data with tailor-
made features for small businesses, street vendors, and hawkers. The platform enables local
communities to contribute information and aid in the growth of these businesses. The mobile
application will have an easy-to-use user interface to minimize time to contribute data.

Figure 4.1: HawkerHub application logo

The HawkerHub platform is scoped for the Android mobile platform and powered by backend
services designed and deployed using AWS free tier services to be cost-effective. Further,
only the client-side or the customer-side application is prioritized, and business-side or the
hawker-side features will be prioritized in later phases (to enable features such as live hawker
tracking, verified businesses, and live updates).

7

5. Technology Stack

HawkerHub is developed using a cross-platform mobile application development framework.
This provides scope for future development to deploy on other platforms with less develop-
ment effort. The application is powered by a serverless backend service hosted using Amazon
Web Services (AWS) Lambda and other AWS service offerings. HawkerHub application also
uses services from the Google Maps Platform for Geocoding, Geolocation, Places API, and
GoogleMaps SDK. The following defines each of these technologies.

5.1 Flutter and Dart

Flutter is an open-source mobile app development framework released by Google in 2017 [5].
It allows developers to build native mobile apps for iOS and Android from a single codebase
using the Dart programming language.

Dart is an object-oriented programming language that Google also developed [6]. It was
designed to be easy to learn and use, with a syntax similar to other popular programming
languages like Java and JavaScript. Dart is known for its fast performance, which makes it
a good choice for building high-performance apps.

One of the main benefits of using Flutter and Dart is the ability to build native apps for
multiple platforms from a single codebase. This not only saves time and effort for developers
but also allows for easier maintenance and updates to the app over time.

Flutter and Dart also offer a rich set of pre-built widgets and tools, which makes it easier
for developers to build beautiful and responsive user interfaces. Additionally, Flutter’s hot
reload feature allows developers to see app changes in real time, speeding up the development
process and improving overall productivity.

8

Overall, Flutter and Dart are potent tools for mobile app development. They offer many
benefits, including cross-platform development, fast performance, and a rich set of pre-built
widgets and tools.

5.2 Amazon Web Services (AWS)

5.2.1 AWS Serverless Application Model (SAM)

AWS SAM (Serverless Application Model) is a framework for building serverless applica-
tions on AWS [7]. It simplifies defining and deploying serverless applications using AWS
Lambda, API Gateway, and other AWS services. With AWS SAM, developers can define
their serverless applications in a YAML or JSON template and then package and deploy
them using the AWS SAM CLI (Command Line Interface) [8]. AWS SAM also provides
local development and testing tools, making building and iterating on serverless applications
easier before deploying them to production.

5.2.2 AWS S3 (Simple Storage Service)

Amazon S3 (Simple Storage Service) is an object storage service offered by AWS [9]. It is
designed to store and retrieve data from anywhere on the web. S3 is widely used for backup
and recovery, data archiving, big data analytics, and content delivery. S3 is highly scalable,
durable, and secure. It allows users to store objects (files) of any size and access them from
anywhere using HTTP or HTTPS protocols. Users can also control access to their objects by
defining permissions for each object or bucket (a container for objects) using AWS Identity
and Access Management (IAM) policies.

9

5.2.3 AWS Lambda

AWS Lambda is a serverless computing service provided by AWS [10]. It allows developers
to run code without the need to provision or manage servers. With AWS Lambda, develop-
ers can create functions that automatically scale to meet demand, run code responding to
events, and only pay for the computing time they consume. AWS Lambda supports mul-
tiple programming languages, including Node.js, Python, Java, and C#. Developers can
trigger their Lambda functions in response to events from other AWS services, such as S3,
DynamoDB, and API Gateway. Lambda functions can also be integrated with third-party
services and custom workflows.

5.2.4 Dynamo DB

Amazon DynamoDB is a fully-managed NoSQL database service provided by AWS [11]. It is
designed to provide fast and predictable performance with seamless scalability. DynamoDB
offers a key-value and document data model, which allows users to store and retrieve any
amount of data from anywhere in the world. DynamoDB is highly available and durable,
providing automatic multi-site replication and backup to help protect against data loss. It
also offers flexible querying and indexing options to support various use cases. DynamoDB
is often used for web and mobile applications, gaming, IoT, ad tech, and other applications
that require low-latency, high-throughput data storage.

5.2.5 Google Maps Platform

Google Maps Platform is a suite of APIs and SDKs offered by Google that enables developers
to integrate Google Maps into their applications [12]. Businesses, governments, and individ-
uals widely use the platform for mapping and location-based services. It includes a range of
products, such as Maps, Routes, and Places, that allows developers to add maps, directions,
and location-based services and supports various programming languages, including Java,
Python, and JavaScript, and can be used on platforms like mobile and web.

10

6. User Interface Design

6.1 Market Survey - Design and Usability Study

A survey is conducted to understand how other applications have designed user interaction
around maps. Also, understand the commonality among feature placements that can be
adopted into the HawkerHub application.

The survey will analyze the following characteristics among our several applications:

• The landing page

• Features on the landing page

• Search Interaction

• Placement of the search feature

• Rendering results

• Map Interaction

• Interactive features (Eg: Zoom In/Out, Home location)

Note: The survey is conducted in the context of Android applications only.

List of surveyed applications:

• Google Maps [13]

• Waze [14]

• Uber [15]

• Lyft [16]

11

Figure 6.1: Google Maps application screenshots

Figure 6.2: Waze application screenshots

12

Figure 6.3: Uber application screenshots

Figure 6.4: Lyft application screenshots

13

6.1.1 The Landing Page

In most of the applications, the screen is rendered with maps with a current location at the
center of the screen and zoomed in to cover a certain radius of the area.

The majority provided the following features:

1. Search Bar

2. Current Location Button

3. Get Directions Button

4. Quick links to explore certain categories (Eg: Restaurants)

5. Bottom bar above the navigation bar with other options

6.1.2 Search Interaction

On using the search bar in the majority of the applications, it lists the user’s recent search
history and accepts input. And, on interacting with the quick search buttons (Category
based), it opens are drawer of results and also plots the result on the map with their ratings
on the location pin.

6.1.3 Map Interaction

Google Maps was the most user-friendly and feature-rich of all the applications surveyed.
The list of features is as follows:

• It provided pinch to zoom In/Out functionality.

• Auto-focuses to map while interacting (full screen), hides other options which use maps.

14

• Auto reset to current location button is provided.

• Double tap zooms into the map.

• Tapping on a location opens relevant information if available (like a business).

• Provides multiple terrain views.

In the case of Uber and Lyft applications, they did not provide multiple terrain views, and
tapping on a specific location on the map had no action.

Based on the above analysis and commonalities, HawkerHub mockups were developed using
Figma.

6.2 Figma Prototypes

Figma is a cloud-based design and prototyping tool used for creating user interfaces, web
and mobile applications, and other digital products. Additionally, Figma provides develop-
ers with easy access to design specifications and assets, streamlining the handoff process.
HawkerHub application was designed using Android’s Material 3 design specification [17].

15

Figure 6.5: Landing page and Hub exploration flow

16

Figure 6.6: Hub contribution flow

Figure 6.7: Hub update flow

17

7. System Architecture

Figure 7.1: System architecture

Request and Response Flow (Creating a Hub)

1. The client initiates an HTTP POST request with a multipart content type (multipart/form-
data).

This request consists of 2 parts.

(a) Files: Binary, A Hub image/photo
(b) Body: JSON, Hub details

2. Amazon API Gateway receives the request, configured to accept only certain HTTP
verbs and endpoints.

3. The API Gateway then invokes an AWS Lambda function associated with the respec-
tive REST service. The Gateway is also responsible for deserialization the request.

18

4. The AWS Lambda function receives the request details and payload as an event context
which is then validated, processed, and the business logic is executed.

5. In the case of creating a Hub, the file (Hub photo) in the request is stored in an AWS
S3 bucket, and in return, a public URL is returned.

6. Further, the JSON data is inserted in the respective AWS DynamoDB table, along
with the S3 object’s public URL returned from the previous step.

7. The final JSON record with the updated public URL is then returned to the client.

Note: Logging and alerting are enabled for traceability and maintenance at each step.

7.1 Resources

7.1.1 Image Resources

Images are stored in S3 bucket and are transported as part of HTTP multipart requests,
which allow binaries as files in the request.

Note: The images are compressed at the clientside to save network round-trip and also save
on storage costs.

7.1.2 Data Resources

Data is stored as JSON objects in DynamoDB and transported in the HTTP multipart
request body. These data are non-relational and suitable for object stores. AWS DynamoDB
is chosen because of its cost in the free tier.

19

7.2 Frontend Architecture

7.2.1 Model-View-ViewModel

Model-View-ViewModel or MVVM is a software design pattern that separates the presen-
tation layer from the business logic and data access layers. It is a popular pattern used in
mobile application development, including Flutter.

In Flutter, developers often use the MVVM pattern in combination with the provider pack-
age. The provider package is a state management library that provides a convenient way to
manage application states across multiple widgets and screens.

The Model layer represents the business logic and data access layer, while the View layer
represents the UI. The ViewModel layer acts as an intermediary between the Model and the
View layers, providing data and functionality to the UI.

With provider, the ViewModel layer is responsible for managing the application state and
providing it to the View layer. It exposes data and functions through a provider object,
which the View layer can access.

The View layer interacts with the ViewModel layer through the provider object, requesting
data and triggering functions as needed. When the ViewModel layer updates the state, it
notifies the View layer through the provider object, triggering a rebuild of the UI.

20

Figure 7.2: MVVM example

21

7.2.2 Provider State Management

The provider manages the state in a Flutter application [18]. It is built on top of the
InheritedWidget, which is a widget that allows data to be passed down the widget tree.
Providers are a mechanism for sharing data between different parts of the app more efficiently
than manually passing data down the widget tree.

The provider state management works by creating a provider that holds the state of the app
and then using that to share the state with other widgets in the app. Providers are typically
defined as classes that extend the ChangeNotifier class, which provides a mechanism for
notifying listeners when the state of the provider changes.

When a provider is created, it is added to the widget tree as a parent of the widgets that
need access to the state. Widgets can then access the state using the Provider.of() method
to retrieve it from the widget tree.

Once a widget has access to the provider, it can use the state stored in the provider to render
itself. If the state in the provider changes, the provider notifies its listeners (i.e., the widgets
that are listening for changes), and the widgets can update themselves accordingly.

In the HawkerHub application, we use only one provider, the hub_provider.dart. The whole
application’s state is stored in this provider. The application is built under the assumption
that all the hub details retrieved from the backend are stored in the state, and it depicts the
true values (as there are cases where the details are updated).

7.3 Backend Architecture

7.3.1 AWS Lambda Function

HawkerHub’s backend is deployed using AWS serverless architecture (NodeJS SDK) and
other AWS offerings. Each REST service is defined as a separate AWS Lambda function so

22

that they can be scaled individually without affecting the other service and are cost-effective.

Lambda Functions: getAllHubsFunction, getHubByIdFunction, insertHubFunction, update-
HubFunction, deleteHubByIdFunction.

Each Lambda function depends on an AWS S3 bucket and AWS DynamoDB table for data.
An IAM role controls their access, which provides fine-grained control over the resources.

inser tHubFunct ion :
Type: AWS: :Se rve r l e s s : :Funct i on
P r o p e r t i e s :

Handler : s r c / hand le r s / i n s e r t −hub . insertHubHandler
Runtime: nodejs16 . x
A r c h i t e c t u r e s :

− x86_64
MemorySize: 128
Timeout: 100
D e s c r i p t i o n : Function to i n s e r t one hub to a DynamoDB tab l e .
P o l i c i e s :

− DynamoDBCrudPolicy:
TableName: ! Ref HubsTable

− S3CrudPol icy:
BucketName: hubs−image

Environment:
V a r i a b l e s :

HUBS_TABLE_NAME: ! Ref HubsTable
Events :

Api :
Type: Api
P r o p e r t i e s :

Path: /hub
Method: POST

Listing 7.1: Definition of the insert hub API’s lambda function

23

7.3.2 AWS S3 Bucket

The S3 bucket stores and retrieves each Hub’s image. When registering a Hub, its photo
is stored in the S3 bucket, and an S3 public URL is updated in its DynamoDB record.
Subsequently, the client application uses the S3 public URL to retrieve the photo. Using
these public URLs to serve the images, we can offload additional calls to Lambda functions,
saving additional costs and maintenance.

HubsImageBucket:
Type: AWS::S3::Bucket
P r o p e r t i e s :

BucketName: hubs−image
Acces sContro l : PublicRead

Listing 7.2: Definition of the S3 bucket

7.3.3 AWS DynamoDB

DynamoDB is a highly scalable datastore available as part of the AWS free tier and always
free in limited capacity [19]. DynamoDB is the primary data store of the application. The
application’s data modeling is done to fit the use cases of a NoSQL object store. Each Hub
is stored in a JSON record identified by a unique hub_id field.

HubsTable:
Type: AWS: :Server l e s s : :S impleTab le
P r o p e r t i e s :

PrimaryKey:
Name: hub_id
Type: S t r ing

Provis ionedThroughput:
ReadCapacityUnits : 2
WriteCapac ityUnits : 2

Listing 7.3: Definition of the DynamoDB table

24

7.3.4 AWS Serverless Application Model (SAM)

The whole backend is deployed using the SAM framework. This framework allows using
Infrastructure as code by defining required resources and policies in a YAML file. Each
AWS service mentioned above is configured in the YAML file and deployed using SAM CLI.
It internally uses AWS CloudFormation, which is an infrastructure as code (IaC) service that
allows you to easily model, provision, and manage AWS and third-party resources. SAM
can deploy into multiple regions using different deployment strategies.

The configuration file for the HawkerHub application can be found here (GitHub).

7.3.5 Deployment Details

AWS Details

AWS Region: us-west-2
Stage Environment:
https://o7bd36fp29.execute-api.us-west-2.amazonaws.com/Stage/hub/
Production Environment:
https://o7bd36fp29.execute-api.us-west-2.amazonaws.com/Prod/hub/

Package Versions

Flutter: 3.3.7
Dart: 2.18.4
DevTools: 2.15.0
Android Minimum SDK Version: 20

25

https://raw.githubusercontent.com/anushkumar27/hawker_hub_backend/master/template.yaml

8. API Documentation

8.1 RESTful APIs

8.1.1 Search APIs

• Get all Hubs

– [GET] /hub

– Returns a JSON array of all the hubs in the system.

– [GET] /hub/{hub_id}

– Returns a JSON of the specified hub ID.

8.1.2 Create API

• Add a Hub

– [POST] /hub

– Content-type: multipart/form-data

– Creates and returns the JSON of the newly created hub.

26

8.1.3 Update API

• Update a Hub

– [PUT] /hub

– Content-type: multipart/form-data

– Updates an existing Hub and returns the JSON of the updated hub.

8.1.4 Delete API

• Delete a Hub by id

– [DELETE] /hub/{hub_id}

– Deletes a Hub and returns the status of the operation.

27

8.2 Swagger Document

Swagger is a popular tool for documenting APIs. It provides a standardized way to describe
an API’s endpoints, parameters, and responses. Swagger documentation can be generated
automatically based on the API code, making it easy to keep documentation up-to-date.
Swagger also provides a web-based user interface for exploring and testing the API, which
can be helpful for developers who are integrating with the API.

The swagger YAML file for the HawkerHub application can be found here (GitHub).

Figure 8.1: Swagger document

28

https://raw.githubusercontent.com/anushkumar27/hawker_hub_backend/master/swagger_doc.yaml

9. Testing

9.1 Unit Testing

Unit testing is a testing technique where individual functions or methods of the code are
tested in isolation from the rest of the application [20]. It involves writing test cases for each
function or method and verifying that it produces the expected output for a given input.
The primary goal of unit testing is to detect and fix bugs early in the development cycle,
making the code more reliable and easier to maintain.

Flutter provides a built-in framework called Flutter Test, allowing developers to write and
run unit tests for their Flutter applications. Flutter Test provides APIs that make it easy for
developers to write and run tests. The framework allows developers to write tests in either
the Dart programming language or Flutter Widget Tests.

Mocking dependencies is an important aspect of unit testing in Flutter. It allows you to
isolate the code being tested from external dependencies such as databases, network requests,
and other external services. This ensures that the unit tests focus only on the specific
behavior of the code being tested, without the interference of external factors.

HawkerHub uses the mockito framework to create mock instances of dependent classes. The
mocked classes are then injected into the test environment via constructor-based dependency
injection. Flutter provides helpful packages such as build_runner, which generates these
mock classes.

A test class name in Flutter ends with the “test” keyword, and mocks that need are generated
“.mocks.dart” appended to the filename. Further, classes to be mocked are declared using
annotation @GenerateMocks([HttpClient, XFile]). The mocked classes have a prefix, for
example, MockHttpClient, which is then used in the tests.

29

9.2 Widget Testing

Widget testing is a testing technique where developers write tests to verify the functionality
and behavior of their UI components, such as buttons, input fields, and widgets [21]. It
involves simulating user interactions with the UI components and verifying that they behave
as expected. The primary goal of widget testing is to ensure that the UI components are
working correctly, free of errors, and providing a smooth user experience.

Flutter Test package provides several methods for widget testing, including.

• pumpWidget: This method builds and displays the widget on the screen, allowing
developers to simulate user interactions with the UI components.

• tester.tap: This method simulates a user tapping on the UI component, allowing de-
velopers to test the component’s behavior.

• tester.enterText: This method simulates a user entering text into an input field, allow-
ing developers to test the field’s behavior.

• expect: This method verifies that the UI component behaves as expected, allowing
developers to identify and fix UI-related issues.

In conclusion, unit and widget testing is a crucial technique in Flutter development to ensure
that the UI components are working as intended and error-free. Flutter Test provides a built-
in framework for developers to write and run application widget tests. By following best
practices for widget testing, developers can write effective tests and ensure that their UI
components are robust, reliable, and provide a smooth user experience.

HawkerHub mobile application has unit and widget test coverage of about 70%.

30

10. Application Screenshots

This section presents screenshots of all the screens involved in the various flows. The figure
caption provides a brief explanation of the components on the screen.

Figure 10.1: Landing page, the first screen presented to the user, contains the search bar,
the contribute button, and a swipe-up drawer.

31

(a) Hubs exploration drawer, a swipe-up Hub ex-
ploring drawer that provides more information
about Hubs in the area.

(b) Tooltip, information of the Hub is overlayed
using a tooltip when the location icon is clicked.

Figure 10.2: Landing page Interactions
32

Figure 10.3: Hubs vertical card, more information about the Hub is represented using the
vertical card. The screen shows the search interaction.

33

(a)

(b)

Figure 10.4: Hub contribution screen, collects all the details required with support to add
multiple locations.

34

(a) Address Picker

(b) Time Picker

Figure 10.5: Address picker is used to pinpoint the location of the Hub. The time picker is
used to record the working hours of the Hub.

35

(a)

(b)

Figure 10.6: Suggest edit screen, similar to Contribution screen, but with pre-filled data of
an existing Hub.

36

11. Future Developments

Integration with the payment platforms

Handling payments for these small businesses can be simplified and cost-effective by inte-
grating with a third-party payment platform. With this integration, small businesses can
enable users to have more payment options and be relieved of maintaining such services.

Introduce revenue models

To serve HawkerHub as a free-to-use platform, and it needs a revenue model to sustain infras-
tructure and development costs. In the future, advertisements and promotions of businesses
could be introduced based on the feedback from its users and businesses on the platforms.

Integration with online delivery platforms

The Hubs on the platform can now be integrated with third-party online delivery platforms
to enable doorstep delivery. This way, the hubs can reach more comprehensive customers
and are more discoverable on social platforms.

Rewards

Currently, the HawkerHub platform does not require the identities of its contributors for
the sole reason of saving time in the contribution process. In the future, we can introduce
identities on a pure volunteer basis to enroll in the rewards program. This program can
incentivize the members of the community to contribute.

37

12. Conclusion

Community support is critical for the survival of small businesses. There are thousands of
hawkers, street vendors, and small businesses around us. Many are on the verge of closure in
the face of modernization. These businesses often face challenges, including fierce competi-
tion from larger companies, limited resources, and a need for more visibility. However, when
the community rallies behind small businesses, it can make all the difference in preventing
their closure.

By supporting small businesses, the community can help create a sustainable local economy
and maintain the unique character of their community. Additionally, small businesses often
contribute to the community in other ways, such as sponsoring local events, providing job
opportunities, and supporting charitable causes. We have seen in the case of Singapore that
a small initiative could help hundreds of local businesses.

The HawkerHub as a platform can play a significant role in enabling and creating an outreach
for these small businesses, hawkers, and street vendors. By us adopting this platform,
hawkers can focus on what they do best - serving the community while leaving the rest to
technology.

38

References

[1] “Street vendors in the us - number of businesses 2003–2028.” https:
//www.ibisworld.com/industry-statistics/number-of-businesses/
street-vendors-united-states/. [Online; accessed 13-March-2023].

[2] “49.48 lakh street vendors identified in india: Gov-
ernment.” https://www.tribuneindia.com/news/nation/
49-48-lakh-street-vendors-identified-in-india-government-366768. [On-
line; accessed 13-March-2023].

[3] “Fraudsters with qr codes give traders nightmares.” https://www.thehindu.com/
news/national/kerala/fraudsters-with-qr-codes-give-traders-nightmares/
article65048726.ece. [Online; accessed 13-March-2023].

[4] “S’porean man, 28, creates map of digitally-disadvantaged hawkers to bring them cus-
tomers.” https://mothership.sg/2021/06/disadvantaged-hawkers-online-map/.
[Online; accessed 13-March-2023].

[5] “Flutter documentation.” https://docs.flutter.dev/. [Online; accessed 13-March-
2023].

[6] “A tour of the dart language.” https://dart.dev/guides/language/language-tour.
[Online; accessed 13-March-2023].

[7] “Aws serverless application model.” https://aws.amazon.com/serverless/sam/. [On-
line; accessed 13-March-2023].

[8] “Aws sam cli.” https://docs.aws.amazon.com/serverless-application-model/
latest/developerguide/serverless-sam-reference.html#serverless-sam-cli.
[Online; accessed 13-March-2023].

[9] “Aws s3.” https://aws.amazon.com/s3/. [Online; accessed 13-March-2023].

[10] “Aws lambda.” https://aws.amazon.com/lambda/. [Online; accessed 13-March-2023].

[11] “Aws dynamodb.” https://aws.amazon.com/dynamodb/. [Online; accessed 13-March-
2023].

[12] “Google maps platform.” https://mapsplatform.google.com/. [Online; accessed 13-
March-2023].

39

[13] “Google maps - apps on google play.” https://play.google.com/store/apps/
details?id=com.google.android.apps.maps&hl=en_US&gl=US&pli=
1. [Online; accessed 13-March-2023].

[14] “Waze navigation - apps on google play.” https://play.google.com/store/apps/
details?id=com.waze&hl=en_US&gl=US. [Online; accessed 13-March-2023].

[15] “Uber - request a ride - apps on google play.” https://play.google.com/store/apps/
details?id=com.ubercab&hl=en_US&gl=US. [Online; accessed 13-March-
2023].

[16] “Lyft - apps on google play.” https://play.google.com/store/apps/details?id=
me.lyft.android&hl=en_US&gl=US. [Online; accessed 13-March-2023].

[17] “Material design.” https://m3.material.io/. [Online; accessed 13-March-2023].

[18] “Provider, flutter package.” https://pub.dev/packages/provider. [Online; accessed
13-March-2023].

[19] “Aws free tier.” https://aws.amazon.com/free/. [Online; accessed 13-March-2023].

[20] Flutter, “An introduction to widget testing.” https://docs.flutter.dev/cookbook/
testing/widget/introduction. [Online; accessed 13-March-2023].

[21] Flutter, “An introduction to unit testing.” https://docs.flutter.dev/cookbook/
testing/unit/introduction. [Online; accessed 13-March-2023].

40

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Existing Solutions
	Google Maps
	Online Delivery Platforms

	Proposed Solution
	Technology Stack
	Flutter and Dart
	Amazon Web Services (AWS)

	User Interface Design
	Market Survey - Design and Usability Study
	Figma Prototypes

	System Architecture
	Resources
	Frontend Architecture
	Backend Architecture

	API Documentation
	RESTful APIs
	Swagger Document

	Testing
	Unit Testing
	Widget Testing

	Application Screenshots
	Future Developments
	Conclusion
	References

