
College of Engineering
Electrical Engineering and Computer Science

Software Innovation Lab
Master’s Project Report
Supreeth Suresh Avadhani

METADEV
Metadata Driven ERP Development Framework

Defended 14th June, 2023
Commencement June, 2023

Abstract

Metadev is an open-source framework (https://www.npmjs.com/package/mv-core) that fa-
cilitates the generation of complete Enterprise Resource Planning (ERP) applications through
metadata. By ‘metadata‘ I mean module-specification files from which Metadev produces a
full-stack ERP system. ERP systems are a type of software which helps businesses to man-
age their day-to-day operations; for example, an ERP might be used to maintain employee
records. The metadata can be written manually, generated from a text prompt, or using
Metadev’s Graphical User Interface (GUI). The framework’s goal is to make implementing
ERP systems affordable and simple for small businesses and non-profit organizations.

i

https://www.npmjs.com/package/mv-core

Acknowledgments

I would like to begin by expressing my deepest gratitude to Professor Will Braynen, whose
expertise, guidance, and unwavering support have been invaluable throughout this project.
His mentorship and insightful feedback have significantly contributed to the quality and
depth of my research.

Next, I want to acknowledge my parents, Dr. N. Suresh and Dr. Uma Suresh, for their
constant love, encouragement, and sacrifices. Their belief in my abilities and unwavering
support have been a driving force behind my achievements. I am eternally grateful for their
faith in me.

To my dear brother and sister-in-law, Sumanth and Dr. Lekha, thank you for always being
there, providing me with a listening ear, and offering words of encouragement. You prepared
me for this master’s journey technically and emotionally even before I started the program.

I am deeply grateful to my grandad, Dr. J. Venkataramana, and grandmom, Lakshmi
Ramana, for their blessings, love, and wisdom. Their unwavering support and guidance have
been a source of strength and inspiration throughout my academic journey.

I would like to express my heartfelt appreciation to my aunts, Dr. Anu Canumalla and
Latha Subramanian, and uncles, Dr. Sridhar Canumalla and Subbu Srinivasan. Their
support, encouragement, and belief in my abilities have provided me with the much-needed
moral and emotional backing during challenging times. They are my home away from home.

Special thanks go to my mentor and main source of motivation, Raghu Bhandi. Your guid-
ance, expertise, and constant encouragement have been instrumental in shaping the direction
of my research. Your dedication and belief in my potential have propelled me to push my
boundaries and strive for excellence.

Lastly, I want to express my heartfelt appreciation to my girlfriend, Tejashree. Your un-
wavering support, love, and understanding have been a constant source of strength and
inspiration to me.

ii

Table of Contents

Abstract i

Acknowledgments ii

1 Introduction 1

1.1 Overview . 1

1.2 Costs and Benefits of an ERP System . 1

1.3 Common Features of ERP Systems . 2

1.4 Prevalent Architecture of ERP Systems . 5

2 Motivation 7

3 The Problem Statement 8

4 Existing Solutions 9

5 The Solution - Metadev 10

5.1 Implementing Layered Architecture . 10

5.2 Tech Stack Migration . 11

5.3 Detailed Architectural Design . 12

6 Metadev JSON Files 19

6.1 application.json . 19

iii

6.2 form.json . 24

6.3 record.json . 26

6.4 template.json . 28

6.5 page.json . 29

7 Empirical Study 31

7.1 Setup . 31

7.2 Task . 31

7.3 Result . 32

7.4 Summary . 33

8 Limitations 34

9 Future Work 35

10 Conclusion 36

References 37

iv

List of Figures

1.1 A screen to view data using a table and chart 3

1.2 A table view screen with options to search and filter 4

1.3 A form screen for adding data . 4

1.4 A pre-filled form screen for editing data . 5

5.1 Layered Architecture . 11

5.2 Detailed Architecture Diagram . 13

5.3 MV-JSON-Generator accepting simple prompt 15

5.4 MV-JSON-Generator accepting specific prompt 16

v

List of Tables

6.1 Description of attributes in the `application.json` file 20

6.2 Description of Sub-Attributes . 21

6.3 Description of attributes in the `*.form.json` file 25

6.4 Description of Attributes in record.json File 27

6.5 JSON Attributes . 30

7.1 Form Fields . 32

7.2 Comparison of ERP System Development 32

vi

1. Introduction

1.1 Overview

Metadev is an open-source framework that generates frontend and backend code for Enter-
prise Resource Planning (ERP) applications with a simple text prompt. ERP refers to a
type of software that organizations use to manage day-to-day business activities such as ac-
counting, procurement, project management, risk management and compliance, and supply
chain operations. Metadev addresses the challenges of building ERP systems by striking the
right balance between having a user-friendly interface and offering customization options.

In this chapter, I discuss the costs and benefits of ERP systems (section 1.2), the common
features of such systems (section 1.3) and their prevalent architecture (section 1.4). This sets
the groundwork for Chapter 2, which delves into how Metadev streamlines ERP application
creation for both technical and non-technical users, ensuring tailored solutions fit specific
project needs.

1.2 Costs and Benefits of an ERP System

ERP (Enterprise Resource Planning) systems are designed to manage and integrate key
business processes, including accounting, procurement, human resources, and inventory. Im-
plementing an ERP system can offer organizations numerous advantages such as streamlined
processes, heightened productivity, enhanced decision-making, and improved visibility into
operations.

To stay competitive, an increasing number of businesses have adopted ERP systems over the
years. The global ERP software market was valued at $40 billion in 2020 and is projected
to reach $47.5 billion by 2023 [1]. The rising demand for cloud-based ERP solutions, known

1

for their flexibility and scalability, is fueling this growth.

The cost and duration of ERP system implementation can vary based on organizational scale
and complexity, system choice, and required customization. On average, ERP implementa-
tion costs $3.7 million and takes 14.3 months [2]. However, these figures can be considerably
higher for larger organizations or more complex implementations.

Despite the costs and time involved, ERP systems can yield substantial long-term benefits.
They can bolster a business’s bottom line by enhancing efficiency, cutting costs, and refining
customer service. A NetSuite study revealed that 67% of businesses with an ERP system
reported increased overall efficiency, 50% reported cost reductions, and 45% cited improved
customer service [3].

The ERP system development process typically encompasses several phases: requirements
gathering, system design, development, testing, deployment, and maintenance. These phases
can be broken down further into project initiation, planning, execution, monitoring and
controlling, and closure.

While ERP systems have demonstrated their capability to offer businesses a competitive edge
and optimize operations, they demand significant time and resources for development and
implementation. Although large enterprises might afford such systems, smaller businesses,
entrepreneurs, and non-governmental organizations might find it challenging. Metadev rev-
olutionizes this landscape by making ERP development and implementation both affordable
and user-friendly for businesses of all sizes.

1.3 Common Features of ERP Systems

ERP systems typically comprise a vast array of screens. In practice, the number of screens
can range from as few as several dozen to several thousand. Nonetheless, the majority
of these screens follow a specific pattern. An authenticated user within an ERP usually
performs the following operations:

2

1. View Data

2. Add Data

3. Modify Data

4. Delete Data

To facilitate these operations, ERP systems employ the subsequent components:

1. Tables

2. Charts

3. Forms

4. Pre-filled Forms

5. Navigation Menu

Figure 1.1: A screen to view data using a table and chart

These figures are sourced from an ERP currently in use by educational institutions. Fig-
ures 1.1 to 1.4 provide a visual representation of ERP operations in a real-world context,
highlighting the components discussed in this section.

3

Figure 1.2: A table view screen with options to search and filter

Figure 1.3: A form screen for adding data

4

Figure 1.4: A pre-filled form screen for editing data

Metadev enhances the development process of these patterns by offering a streamlined ap-
proach. It presents a graphical user interface for component generation and also produces
the complementary server-side code for the created user interface.

1.4 Prevalent Architecture of ERP Systems

The N-tier architecture pattern, dividing applications into client and server sides, is the
dominant blueprint for ERP applications due to its consistent performance in meeting user
needs.

1.4.1 Client Side

Designed to amplify user satisfaction, the client side stresses a front-to-back method to
guarantee a user-centric interface. It communicates with the server side through common
protocols for efficient data transfer, emphasizing usability and performance.

5

1.4.2 Server Side

The server side acts as a central "System of Records" meeting statutory and managerial
demands, ensuring data precision. Additionally, it manages a myriad of services and can in-
terface with other server applications or clients via standard protocols, allowing for adaptable
communication methods.

1.4.3 Development Approach

Though the client and server sides are individual entities, their concurrent development en-
sures synergy and minimizes redundancy. Adhering to best practices like the DRY principle,
both components, despite possible variance in data model complexity, maintain mutual do-
mains and validation rules. This encourages uniformity, reusability, and ensures harmony
between the two.

In summary, the prevailing method for crafting applications hinges on a dual-component
architecture: the user-centric client side and the data-focused server side. Its widespread
adoption stems from its capacity to meet user demands efficiently, fostering both robustness
and user-friendliness.

6

2. Motivation

Metadev’s inception centers around addressing challenges in software, notably ERP system
development. Traditional methods, characterized by manual coding, often consume time and
are susceptible to errors. Metadev counters this with an intuitive graphical user interface
and automated code generation. Research indicates that tools like Metadev can potentially
cut development times by up to 40

A salient motivation for Metadev is development process simplification. Its visual interface
permits developers to design and auto-generate code, boosting comprehension and efficiency
– with potential time savings reaching 30% [4]. Metadev fosters software consistency and
standardization through its pre-configured templates, enhancing code quality and maintain-
ability [5].

Its accessibility stands out for non-tech experts, like business analysts, allowing them to
visually craft and adjust systems, fostering better communication and reducing iterations [6].
For NGOs, Metadev is invaluable. With typically constrained resources, they benefit from
its efficiency, directing more energy towards primary missions. Given the unique challenges
NGOs encounter, Metadev’s adaptability ensures software aligns with their specific demands.

Even for prominent tech firms, Metadev offers accelerated development, shortening product
release times. Its generated code forms a baseline, upon which further customization can
occur, ensuring software meets market needs with agility.

To conclude, Metadev’s motivations span efficiency enhancement, development simplifica-
tion, and adaptability, making it a fitting solution for both NGOs and large tech companies
in their software endeavors.

7

3. The Problem Statement

This study delves into the drawbacks of conventional software development methods, es-
pecially in the realm of ERP systems. The current tools and approaches, encompassing
manual coding, IDEs, and various platforms, are beset by issues related to time, intricacy,
adaptability, and the inclusion of non-technical parties. These challenges compromise the
development’s efficacy, understandability, maintainability, and customization across different
entities, such as NGOs and major tech corporations.

There’s also the taxing concern of updating applications in line with swiftly advancing tech
like React and Vue.js. Migrations not only bear heavy time and financial burdens but often
don’t align with projections. A study by Dimensional Research [7] underlines this, noting:

1. 57% of participants found migrations lengthier than anticipated.

2. 73% felt the transition spanned one to two years.

3. Budgets were exceeded in 55

4. 70% preferred multi-cloud strategies, driven by diverse benefits (77%) and avoiding
sole vendor reliance (58

These findings contest the advantages touted by the dominant N-tier architecture pattern for
ERP apps. This report introduces Metadev as a potential remedy, examining its capacity to
elevate development practices. The goal is understanding if Metadev can foster development
efficiency, uncomplicate procedures, endorse best standards, engage non-tech individuals, and
allow tailoring. Through a comparative lens with established methods, this study aspires
to gauge Metadev’s merits in refining software creation and catering to an organization’s
specific needs.

8

4. Existing Solutions

Software development encompasses an array of solutions addressing the intricacies of con-
structing software, notably ERP systems. Each solution presents its advantages and inherent
challenges. This section elucidates the prominent methods and their comparative merit.

Traditional manual coding, the bedrock of software creation, entails developers crafting code
from the ground up. This avenue, while affording comprehensive control and customization,
is susceptible to errors and extended development periods [8].

Integrated development environments (IDEs) amplify developer productivity with a fusion
of code editors, debuggers, and project management utilities. However, they’re intrinsically
rooted in manual coding, devoid of visual interfaces akin to Metadev’s offerings [4].

Emerging platforms advocating low-code and no-code paradigms empower users to fabri-
cate software with scant to zero coding. Although rapid in development, they potentially
compromise on adaptability and intricate customizations [5].

Established commercial ERP systems, epitomized by SAP, Oracle, and Microsoft Dynamics,
orchestrate multifaceted business tasks. While expansive, their intricate nature and steep
expenses demand extensive, often cumbersome, customizations [6].

Open-source frameworks furnish developers with pre-existing code segments, expediting de-
velopment via code recycling. Yet, these necessitate considerable technical acumen and
persist with manual coding [9].

In contrast, Metadev merges a lucid graphical interface, code automation, and adaptable
capabilities, particularly geared towards ERP systems. This amalgamation optimizes both
swiftness and pliability in development, catering to bespoke organizational demands.

To encapsulate, while each method carves its niche, Metadev emerges as a holistic solution
amalgamating user-friendliness, auto-code generation, and precise ERP system concentra-
tion, marking it as an attractive proposition for software development endeavors.

9

5. The Solution - Metadev

Metadev, a fusion of "metadata" and "development", is centered on metadata-driven devel-
opment, emphasizing design over prolonged implementation. Given the agility required in
developing expansive ERP systems, Metadev’s concept expedites changes while minimizing
resource drain. Up next, we delve into the architectural anatomy of Metadev.

5.1 Implementing Layered Architecture

5.1.1 The Problem

Layered architecture, a predominant architectural style, partitions components based on
functionality. Ideal implementations, as depicted in Figure 5.1, champion:

1. Consistency: Uniform layering across projects.

2. Browsability: Grouped components ease modification.

Unfortunately, real-world applications often deviate, resulting in convoluted spaghetti code
(Figure 5.2).

5.1.2 Solution

Metadev’s introduction of agents - Client, Server, and Data - enforces the layered architec-
ture by governing inter-layer communication. These agents obviate spaghetti architecture
and preserve layer independence, with configurable communication protocols like REST and
GraphQL (Figure 5.3).

10

Figure 5.1: Layered Architecture

5.2 Tech Stack Migration

5.2.1 The Problem

As technology races ahead, migrating to new tech stacks becomes cumbersome, fraught with:

1. Application intricacies.

2. Entangled architecture.

3. Business logic entwined with code.

4. Herculean task of reinventing extensive applications.

A case in point is Canvas’s codebase (Figure 5.4), where migration means trawling through
intertwined business logic in over 100,000 lines.

11

5.2.2 The Solution

Metadev’s metadata-driven technique segregates business specifications from code, relying
on generators to interpret metadata and produce code. When switching tech stacks, just a
new generator and Metadev’s npm package suffice.

Consider an ERP application with over 200 CRUD screens migrating from Angular to React:

Case 1: Traditional Migration - Redoing all 200 screens in React.

Case 2: Metadev - Introducing a React generator for automated screen code generation,
supplemented with the mv-react-core library for React-rendering.

Clearly, Metadev provides a leaner, streamlined path for tech stack transitions, especially
for expansive ERP applications.

5.3 Detailed Architectural Design

In this section, the framework’s detailed architectural design is discussed. The scope of the
architecture comprises prompt processing, code generation, stored procedure generation, and
UI element rendering. Figure 5.5 provides an overview of the architecture. To achieve the
objectives outlined in the previous section, the framework employs the following elements:

1. Metadev JSON Generators

2. Metadev Core Package

3. Metadev Generator

4. Metadev NPM Package

5. Service Agents

12

Figure 5.2: Detailed Architecture Diagram

5.3.1 Metadev JSON Generator

Metadev JSON Generator is a user interface for generating metadata from simple prompts
and stores them as JSON files. The JSON generator generates the following JSON files:

1. template.json

2. page.json

3. record.json

4. form.json

These JSON files contain the metadata required to generate the end-to-end application code.
The purpose and structure of JSON files will be elaborated upon in a later chapter. The
process begins with the user entering a prompt containing the page’s requirements. For
instance, the user may choose to provide a prompt as simple as students or as detailed as
A page for students with fields for student name, age, identification number, and place of

13

residence. In both cases, the generator creates the metadata files; however, the first prompt
generates a more generic page, with the engine making appropriate assumptions, whereas
the second prompt generates a page tailored to the requirements. Figures 5.6 and 5.7 depict
simple and detailed prompts in use.

When a user enters a prompt, an HTTP call is made to the MV-JSON-Generator-Backend,
and the generated JSON files are returned. The MV-JSON-Generator generates JSON files
using the OpenAI chat completion API. The model has been explicitly trained on JSON
file-specific example data. Moreover, prompt engineering is performed to ensure the model
responds with accurate JSONs.

5.3.2 Metadev Core Package

The Metadev core package is the heart of the framework. The package includes the frame-
work datatype definitions, metadata definitions, and the server agent. The server code,
produced by the Metadev generator, uses this package to complete all processes.

5.3.3 Metadev Generator

The Metadev generator is tasked with unpacking JSON files and their associated metadata.
It produces code for database query strings and endpoints as well as data models, interfaces,
and backend services. The bootstrap file acts as the configuration file in which users define
the path to the JSON files. Additionally, users can also set up the database by adding the
database connection string to the bootstrap file.

5.3.4 Metadev NPM Package

The Metadev NPM package contains the client-side datatype definitions, form functions,
form operations, and core client UI elements. The default form functions are:

14

Figure 5.3: MV-JSON-Generator accepting simple prompt

15

Figure 5.4: MV-JSON-Generator accepting specific prompt

16

1. saveAsNew - Create Operation

2. save - Update Operation

3. fetchData - Read Operation

4. delete - Delete Operation

5. setFieldValue - Set a value for a particular field

6. getFieldValue - Get a value for a specific field

All the mentioned functions are asynchronous and return an observable. Users can choose
to import the library directly or opt to clone the library and make project-specific design
and functionality changes.

5.3.5 Service Agents

In the framework, the communication layer consists of both the client and server service
agents. These agents manage communication between the client application and the server
application. However, direct communication between client and server applications is not
permitted. Instead, the client application interacts with the client service agent, making
function calls to request or transmit data, preferably in JSON format. The client service
agent is responsible for initiating the required HTTP calls to the server service agent.

Upon receipt of the request, the server service agent activates the appropriate endpoint
or service linked to the request. The server then forms a response, which is sent back
to the server service agent. The server service agent transmits the response to the client
service agent, which unpacks it and forwards it to the client application. This indirect
communication procedure ensures the client application remains unaware of the underlying
HTTP calls, focusing solely on data handling.

A key benefit of the agents is their ability to seamlessly switch the underlying communication
layer. For example, transitioning from REST to GraphQL without adjusting the client or

17

server application code becomes feasible by merely integrating new agents. This adaptability
allows applications to effortlessly shift between communication protocols without necessitat-
ing extensive code modifications or repetition.

18

6. Metadev JSON Files

Metadev JSON files are the files which contain the metadata required for the application.
The metadata JSONs are of 5 types:

1. application.json

2. *.form.json

3. *.record.json

4. *.page.json

5. *.template.json

All these files would ideally be generated by the MV-JSON-Generator. However, the user
can also choose to manually write in all the JSON files or update the generated JSON files
based on the requirement. The JSON generator only serves as a tool to assist in writing the
JSON files. Each one of these metadata JSON files are discussed in detail in the following
sections.

6.1 application.json

The `application.json` file encompasses crucial information specific to the application. This
file can be configured to adhere to a multi-tenant architecture, allowing for the specification
of the tenant field and the corresponding tenant database table name. The `application.json`
file should be ideally used by software architects who understand the requirements of the
entire application and/or have a decent understanding of how software is built. In Table 6.1,
various attributes and sub-attributes available for utilization within the `application.json`
file are discussed.

19

Table 6.1: Description of attributes in the `application.json` file

Attribute Datatype Explanation Example
name string The name of the

application.
"metadev-example"

tenantFieldName string The name of the
tenant field.

"tenantId"

tenantDbName string The name of the
tenant database.

"tenant_id"

Lists
valueLists Value list objects Lists containing

predefined value
lists.

See sub-attributes

keyedLists Object of keyed list
objects

Lists dependent on
keys such as phone
number

See sub-attributes

dataTypes
booleanTypes Object of boolean

type objects
Object containing
boolean data types.

See sub-attributes

decimalTypes Object of decimal type
objects

Object containing
decimal data types.

See sub-attributes

dateTypes Object of date type
objects

Object containing
date data types.

See sub-attributes

integerTypes Object of integer type
objects

Object containing
integer data types.

See sub-attributes

textTypes Object of text type
objects

Object containing
text data types.

See sub-attributes

20

Table 6.2: Description of Sub-Attributes

Sub-Attribute Value Datatype Example
Value List Object array of value and la-

bel objects
"accountStatus": [{ "value": "Active", "la-
bel": "Active" }]

Keyed List Object Nested object of key
with array of value, la-
bel objects

"state": { "130": [{ "value": "Karnataka",
"label": "Karnataka" }, { "value": "Tamil
Nadu", "label": "Tamil Nadu" },

Boolean type object object with errorId at-
tribute

"bool": { "errorId": "invalidBool" },

Decimal type object object with errorId,
maxValue, nbrFrac-
tions attributes

"internalMarks": { "errorId": "invalidIter-
nalMarks", "maxValue": 100, "nbrFrac-
tions": 2 }

Date type object object with errorId,
maxPastDays, max-
FutureDays attributes

"date": { "errorId": "invalidDate", "max-
PastDays": 73000, "maxFutureDays":
73000 }

Integer type object object with errorId,
minValue, maxValue
attributes

"flexibleId": { "errorId": "invalidFlex-
ibleId", "minValue": -1, "maxValue":
9999999999999 }

Text type object object with er-
rorId, minLength,
maxLength and regex
attributes

"uniqueId": { "errorId": "in-
validUniqueId", "regex": "[1-9][0-9]15",
"minLength": 16, "maxLength": 16 }

21

To provide a comprehensive understanding, Listing 6.1 presents a code snippet exemplifying
the structure and content of an `application.json` file.

{
"name" : "metadev−example " ,
" tenantFieldName " : " tenent Id " ,
" tenantDbName " : " tenent_id " ,
" dataTypes " : {

" booleanTypes " : {
" bool " : {

" e r r o r I d " : " i nva l i dBoo l "
}

} ,
" decimalTypes " : {

" decimal " : {
" e r r o r I d " : " inva l idDec ima l " ,
"maxValue " : 1000 ,
" nbrFract ions " : 4

}
} ,
" dateTypes " : {

" date " : {
" e r r o r I d " : " inva l idDate " ,
"maxPastDays " : 73000 ,
"maxFutureDays " : 73000

}
} ,
" integerTypes " : {

" f l e x i b l e I d " : {
" e r r o r I d " : " i n v a l i dF l e x i b l e I d " ,
" minValue " : −1,
"maxValue " : 9999999999999

22

}
} ,
" textTypes " : {

" uniqueId " : {
" e r r o r I d " : " inva l idUniqueId " ,
" regex " : " [1 −9] [0 −9]{15} " ,
" minLength " : 16 ,
"maxLength " : 16

}
} ,
" timestampTypes " : {

" timestamp " : {
" e r r o r I d " : " invalidTimestamp "

}
}

} ,
" v a l u eL i s t s " : {

" gender " : [
{

" va lue " : "Male " ,
" l a b e l " : "Male "

} ,
{

" va lue " : " Female " ,
" l a b e l " : " Female "

} ,
{

" va lue " : " Others " ,
" l a b e l " : " Others "

}
]

} ,

23

" keyedL i s t s " : {
" s t a t e " : {

" 130 " : [
{

" va lue " : " Karnataka " ,
" l a b e l " : " Karnataka "

} ,
{

" va lue " : " Tamil␣Nadu" ,
" l a b e l " : " Tamil␣Nadu"

}
]

}
}

}
Listing 6.1: example application.json

6.2 form.json

`*.form.json files‘ encompass essential metadata pertaining to the client side application. It
serves as a means to define the fields, their corresponding types, and labels within the appli-
cation. Notably, if a modification is required for a field label, it can be accomplished solely
by editing the content of the JSON file, without necessitating any changes to the underlying
codebase. Additionally, each instance of `*.form.json` must be associated with a distinct
`*.record.json` file, establishing a one-to-one relationship between the form and its corre-
sponding record. The `*.form.json` file should ideally used by frontend engineers. In Table
6.2, various attributes and sub-attributes available for utilization within the `*.form.json`
files are discussed.

To provide a comprehensive understanding, Listing 6.2 presents a code snippet exemplifying

24

Table 6.3: Description of attributes in the `*.form.json` file

Attribute Data Type Explanation Example
name String Name of the form orders
recordName String Name of the record associ-

ated with the form
orders

serveGuests Boolean Indicates if non-
authenticated requests
are to be served

true

operations Array of Strings Permitted operations ["Create", "Filter",
"Get", "Update"]

controls Array of Objects Control details for the table
Control Details

name String Name of the field to map the
form field with the record
field

orderId

label String Label to be displayed on the
UI

Order Name

controlType Type of UI input textarea

the structure and content of an `*.form.json` file. The code snippet is an example for taking
in customer details.

{
"name" : " customerLis t " ,
" recordName " : " customers " ,
" se rveGuests " : " t rue " ,
" ope ra t i on s " : [" Create " , " F i l t e r " , " Update " , "Get "] ,
" c on t r o l s " : [{

"name" : " customerId " ,
" l a b e l " : " " ,
" controlType " : " hidden "

} , {
"name" : " customerName " ,

25

" l a b e l " : " Customer␣Name" ,
" controlType " : " input "

} , {
"name" : " customerEmail " ,
" l a b e l " : " Customer␣Email " ,
" controlType " : " input "

} ,
{

"name" : " customerPhone " ,
" l a b e l " : " Customer␣Phone " ,
" controlType " : " input "

}]
}

Listing 6.2: example customers.frm.json

6.3 record.json

`*.record.json` files serve as the specification files for the modules defining the design of the
modules. The `*.record.json` files play a pivotal role in establishing a connection between
the client application, server application and the associated database. It encompasses essen-
tial information regarding the database configuration and serves as a mapping mechanism
between the form fields and the corresponding database table. Additionally, `*.record.json`
incorporates data validation specifications for the forms on both server and client side. No-
tably, the relationship between records and forms is defined as one-to-many, allowing multiple
forms to utilize the same record.

It is crucial to ensure that the field names in both `*.form.json` files and `*.record.json`
files are identical to facilitate accurate mapping between the two entities. This alignment
guarantees the proper synchronization and integration of data between the client application
and the underlying database. In Table 5.4, various attributes and sub-attributes available

26

for utilization within the `*.record.json` files are discussed.

To provide a comprehensive understanding, Listing 5.3 presents a code snippet exemplifying
the structure and content of an `*.form.json` files. The code snippet is an example for taking
in customer details.

Table 6.4: Description of Attributes in record.json File

Attribute Data Type Explanation Example
name String Name of the record customers
nameInDb String Name of the asso-

ciated table in the
database

customers

operations Array of Strings Permitted operations ["Create", "Filter", "Update", "Get"]
fields Array of Objects Field details for the

record
Field Details

name String Name of the field customerId
dbColumnName String Corresponding col-

umn name in the
database

customer_id

dataType String Data type of the field id
fieldType String Type of the field generatedPrimaryKey

{
"name" : " customers " ,
" nameInDb" : " customers " ,
" ope ra t i on s " : [" Create " , " F i l t e r " , " Update " , "Get "] ,
" f i e l d s " : [{

"name" : " customerId " ,
"dbColumnName" : " customer_id " ,
" dataType " : " id " ,
" f i e ldType " : " generatedPrimaryKey "

} , {
"name" : " customerName " ,
"dbColumnName" : "name" ,

27

" dataType " : "name" ,
" f i e ldType " : " requiredData "

} , {
"name" : " customerEmail " ,
"dbColumnName" : " emai l " ,
" dataType " : " emai l " ,
" f i e ldType " : " requiredData "

} , {
"name" : " customerPhone " ,
"dbColumnName" : " phone_number " ,
" dataType " : " phone " ,
" f i e ldType " : " opt ionalData "

}]
}

Listing 6.3: example customers.record.json

6.4 template.json

The purpose of a "*.template.json" files is to serve as a pure UI metadata file, specifically
designed for describing the layout of pages that adhere to a particular pattern. It functions as
a blueprint for constructing consistent page designs throughout an application. For instance,
consider an "add" page that typically consists of a form followed by two buttons: one for
saving the data and another for navigating back. By employing a template.json file, a UX
architect can establish a definitive structure for the "add" screen. Consequently, if there is
a need to modify the design of the "add" screens, such as reducing the number of buttons
from two to one, the alteration can be made solely within the template.json file, without
requiring any code changes to individual pages. This approach not only streamlines the
development process but also ensures standardization across pages, eliminating potential UI
errors that may arise. Table 6.5 gives the list of attributes and Listing 6.4 shows an example
template.json file.

28

{
" templateName " : " EntryPage " ,
" h tmlSe l e c to r " : " app−entry−page " ,
" templateType " : " form " ,
" enableRoutes " : true ,
" buttons " : [{

"name" : " Save␣Record " ,
" a c t i on " : " Create " ,
" buttonType " : " Primary " ,
" routeOnClick " : t rue

} , {
"name" : " Navigate ␣Back " ,
" a c t i on " : " Navigate " ,
" buttonType " : " Secondary " ,
" routeOnClick " : t rue

}]
}

Listing 6.4: example entry.template.json

6.5 page.json

The `*.page.json` files function as a comprehensive fusion of the `template.json` files and
`form.json` files, encompassing the fundamental attributes of an individual page within
the application. The primary responsibility of frontend engineers, for creating new pages,
revolves around populating the `page.json` files with pertinent metadata. This approach
guarantees adherence to UI standards and facilitates time-saving measures.

29

Table 6.5: JSON Attributes

Attribute Data Type Explanation Example
pageName string Name of the page customerEntry
componentForm string Component form for

the page
customerList

templateType string Type of the template EntryPage
pageSelector string Selector for the page app-customer-entry
pageRoute string Route for the page customer-entry
navMenuName string Name of the naviga-

tion menu
Customers

isSavePage string Indicates if the page is
a save page

True

editRoute string Route for editing the
page

customer-edit

routeTo array route to objects Button Route Defini-
tions

{ "name": "Save
Record", "route":
"customerList" }

Sub-Attribute: routeTo
name string Name of the route Save Record
route string Route for the route customerList

30

7. Empirical Study

An empirical study was conducted to study the time taken to build a simple ERP application
by experienced software engineers in their stack of preference vs an engineer experienced in
Metadev.

7.1 Setup

For the purpose of an academic report, a group of three highly skilled software engineers, each
specialized in different frameworks, and an engineer with expertise in Metadev, were chosen
to partake in a challenge. The participants were assigned the same task, and meticulous
records of the setup and implementation phases were kept to accurately measure the time
taken.

7.2 Task

The task is to build an end-to-end ERP system that includes the UI, server, and database.
The ERP system should be capable of displaying, creating, and editing details for the entities
and attributes mentioned in Table 7.1.

The application must have the following features:

1. A table to display the data

2. Pre-filled forms for data update

3. Frontend validations

4. Server side validations

31

Table 7.1: Form Fields

Customer Entity Attributes
Field Name Is Required Shown/Not Shown
Customer ID Yes Not Shown
Customer Name Yes Shown
Customer Phone Number No Shown
Customer Email Yes Shown

Order Entity Attributes
Field Name Is Required Shown/Not Shown
Order ID Yes Not Shown
Order Reference Number No Shown
Order Details Yes Shown

5. Database to store and retrieve information

Implementing material design is an optional feature. Please note that the any choice of
stack and the actual implementation can be used based on the participant’s comfort and
experience.

7.3 Result

All 4 participants were able to finish the task and the results are tabulated in Table 7.2

Table 7.2: Comparison of ERP System Development

Participant Stack Chosen Setup Time Implementation Time Final Time
Number (in hours) (in hours) (in hours)
1 Python, SQL, HTML, JS 33 154 187
2 Fast API, SQLite, Svelte 15 182 197
3 NextJs, PostgreSQL 10 191 201
4 Metadev, PostgreSQL 32 8 40

32

7.4 Summary

Based on the obtained results, it is clear that implementing ERP modules using Metadev
is significantly faster compared to other frameworks. However, it should be noted that the
setup time for Metadev is relatively longer. This setup time can be reduced significantly with
the provision of improved documentation and error reporting. In summary, the empirical
study concludes that Metadev is a more time-efficient approach for building ERPs.

33

8. Limitations

The limitations of Metadev are contingent on the speed and availability of agent development
for frameworks like ReactJs, VueJs, NextJs, etc. While users can craft their own agents, the
framework’s full potential manifests when multiple agents are accessible. The capacity of
Metadev to smoothly transition projects not originally built with it is also unconfirmed.
These constraints are pivotal when gauging Metadev’s efficiency and relevance.

34

9. Future Work

The existing Metadev version is a metadata-driven development proof of concept. It houses
an Angular frontend package, a SOA communication layer agent, and a Java generator.
Future pursuits include adding frontend packages for ReactJS, VueJS, etc., and building
new communication layer agents for REST and GraphQL. Backend generators for languages
like Python, C#, etc., can also be introduced. Additionally, considering the rise of mobile
devices, supporting native apps for iOS and Android is vital. Envisioning a UI akin to
Android Studio or Xcode could preclude manual JSON metadata writing. The framework’s
zenith is generating diverse native application versions across multiple tech stacks using
identical JSON files, which will truly segregate the development process.

35

10. Conclusion

Traditional ERP system development methods encounter various hindrances. Manual cod-
ing, IDEs, ERP systems (both commercial and open-source), and low-code/no-code plat-
forms have restrictions that deter development agility and code understanding. Transitioning
apps to adapt to modern technologies is both prolonged and pricey.

Metadev, introduced in this academic report, addresses these issues. It’s an open-source tool
that produces frontend and backend ERP application code, balancing easy interfaces and
customization. Metadev fosters efficient development, simplifies procedures, and engages
non-tech users. It complements standard ERP application’s N-tier architectural patterns
and overcomes previous solutions’ limitations.

After contrasting with alternate solutions, this report extols Metadev’s distinct attributes
and its proficiency in refining software development methods. It caters to different entities,
from NGOs to tech giants.

Conclusively, Metadev emerges as a potent solution to traditional ERP development is-
sues. Its frontend and backend code generation capabilities, emphasis on customization and
accessibility, earmark it as indispensable for both technical and non-technical users. With
Metadev, entities can elevate development productivity, champion best practices, and realize
bespoke ERP solutions.

36

References

[1] Gartner, “Market share analysis: Erp software, worldwide, 2020.” https://www.
gartner.com/en/documents/4000842, 2020.

[2] P. Consulting, “Average erp implementation time.” https://www.
panorama-consulting.com/average-erp-implementation-time/, 2021.

[3] NetSuite, “Erp benefits.” https://www.netsuite.com/portal/resource/articles/
erp/erp-benefits.shtml, 2023.

[4] Y. Liu and G. Ruhe, “Visual programming environments: A survey,” ACM Computing
Surveys, vol. 40, no. 4, pp. 1–52, 2008.

[5] A. E. Hassan and P. Jalote, “The impact of coding standards on software quality: A case
study,” IEEE Transactions on Software Engineering, vol. 27, no. 10, pp. 981–993, 2001.

[6] B. W. Boehm and P. J. Papaccio, “Understanding and controlling software costs,” IEEE
Transactions on Software Engineering, vol. 14, no. 10, pp. 1412–1421, 1988.

[7] CloudZero, “Cloud migration 101: The complete guide to migrating to the cloud,” May
2023.

[8] Y. Chen, L. Wang, and Y. Zhang, “A survey on code generation for enterprise resource
planning systems,” Journal of Systems and Software, vol. 131, pp. 128–145, 2017.

[9] Y. Zhang, Y. Chen, and L. Wang, “A survey on low-code/no-code platforms,” ACM
Computing Surveys, vol. 51, no. 4, pp. 1–36, 2019.

37

	Abstract
	Acknowledgments
	Introduction
	Overview
	Costs and Benefits of an ERP System
	Common Features of ERP Systems
	Prevalent Architecture of ERP Systems

	Motivation
	The Problem Statement
	Existing Solutions
	The Solution - Metadev
	Implementing Layered Architecture
	Tech Stack Migration
	Detailed Architectural Design

	Metadev JSON Files
	application.json
	form.json
	record.json
	template.json
	page.json

	Empirical Study
	Setup
	Task
	Result
	Summary

	Limitations
	Future Work
	Conclusion
	References

